Предмет: Математика,
автор: Prosha200508
Ненулевое число "а" таково, что оба корня уравнения ниже-целые числа. Укажите наибольшее число которое может быть корнем этого уравнения.
ПОЖАЛУЙСТА. ОЧЕНЬ СРОЧНО
kanmmu:
А где уравнение?
Ответы
Автор ответа:
0
a^2*x^2+ax+1-21a^2=0
из т. Виета
x1+x2=-1/a
x1*x2=1/a^2-21
---
x1*x2=(x1+x2)^2-21
x1^2+x1*x2+x2^2=21
(x1+x2/2)^2=21-3x^2/4
если правая часть отрицательна уравнение не имеет смысла, найдем те значения x2 при которых уравнение будет иметь смысл.
28-x2^2>0
-5<x2<5 так как корни целые.
Значит максимальное значение которые может принимать x2 это 5(ТК.система симметрична x1 тоже будет <=5)
осталось понять, при x2=5 есть целые корни или нет, подставим в наше уравнение.
(x1+5/2)^2=3(28-25)/4
x1=(-5+-3)/2=-1;-4.
ответ наибольшее число которое может являться корнем это 5.
Похожие вопросы
Предмет: Английский язык,
автор: соня1305
Предмет: Русский язык,
автор: larionova57
Предмет: Русский язык,
автор: lera198983
Предмет: Математика,
автор: 346352466
Предмет: Математика,
автор: evkaaa2005