Предмет: Алгебра, автор: arslan051005

ДАЮ 25 БАЛЛОВ
1 В прямоугольном треугольнике tgα=4. Найдите: sinα, cosα, ctgα.
2 Вычислите: ctg240^0+ tg300^0-sin(-225^0)-cos495^0.

Ответы

Автор ответа: abriutin
1

Ответ:

См. Объяснение

Объяснение:

№ 1

Задание

В прямоугольном треугольнике tgα=4. Найдите: sinα, cosα, ctgα.

Решение

1) tg²α = 1/cos²α - 1

4² = 1/cos²α - 1

1/cos²α - 1 = 16

(1-cos²α)/cos²α =16

16cos²α = 1-cos²α

17cos²α = 1

cos²α = 1/17

cosα = √(1/17) = √17/17 ≈ 0,2425356

2) tgα = sinα/cosα

sinα/cosα = 4

sinα/√17/17= 4

sinα = 4 · √17/17 = (4√17)/17 ≈ 0,9701425

3) ctg α = 1/tgα = 1/4 = 0,25

Ответ:

sinα = 4√17)/17 ≈ 0,9701425;

cosα = √17/17 ≈ 0,2425356;

ctgα = 0,25.

№ 2

Вычислить:

ctg240° + tg300° - sin(-225°) - cos495°.

Решение

1) ctg240° = ctg (180°+60°) = ctg60° = √3/3

2) tg300° = tg(270°+ 30°) = - сtg30° = - √3

3) - sin(-225°) = sin(225°) = sin(180° + 45°) = - sin45° = - √2/2  

4) - cos 495° = - cos (360° + 135°) = - cos (135°) = - cos (180°- 45°) = cos 45° =  √2/2

ctg240° + tg300° - sin(-225°) - cos495° = √3/3 - √3  - 2/2 +√2/2  =

= √3/3 - √3 ≈ - 1,1547

Ответ: √3/3 - √3 ≈ - 1,1547


arslan051005: arigato
abriutin: не за что)))
Похожие вопросы