Предмет: Алгебра, автор: jeremiahvaleska

1) cos60° – sin60° + ctg60° – tg60°;
2) -sin30° + cos30° – ctg30° + tg30°;
3) cos45° – tg45° – sin45° + ctg45°;
4) sin0° – cos30° + tg45° – ctg60°;
5) -cos0° + tg30° - ctg45° + sin60°;
6) tg0° – ctg90° - sin0° – cos90°.

Приложения:

Ответы

Автор ответа: Miroslava227
30

Ответ:

1

 \cos(60^{\circ} )  -  \sin(60^{\circ} )  + ctg(60^{\circ} ) - tg(60^{\circ} ) =  \\  =  \frac{1}{2}  -  \frac{ \sqrt{3} }{2}  +  \frac{ \sqrt{3} }{3}  -  \sqrt{3}  =  \\  =  \frac{3 - 3 \sqrt{3} + 2 \sqrt{3}   - 6 \sqrt{3} }{6}  =  \\  =  \frac{3 - 7 \sqrt{3} }{6}

2

 -  \sin(30^{\circ} )  +  \cos(30^{\circ} )  - ctg(30^{\circ} ) + tg(30^{\circ} ) =  \\  =  -  \frac{1}{2}  +  \frac{ \sqrt{3} }{2}  -  \sqrt{3}  +  \frac{ \sqrt{3} }{3}  =  \\  =  \frac{ - 3 + 3 \sqrt{3}  - 6 \sqrt{3}  + 2 \sqrt{3} }{6}  =  \\  =  \frac{ - 3 -  \sqrt{3} }{6}  =  -  \frac{3 +  \sqrt{3} }{6}

3

 \cos(45^{\circ} )  - tg(45^{\circ} ) -  \sin(45^{\circ} )  + ctg(45^{\circ} ) =  \\  =  \frac{ \sqrt{2} }{2}  - 1 -  \frac{ \sqrt{2} }{2}  + 1 = 0

4

 \sin(0^{\circ} )  -  \cos(30^{\circ} )  + tg(45^{\circ} ) - ctg(60^{\circ} ) =  \\  = 0 -  \frac{ \sqrt{3} }{2}  + 1 -  \frac{ \sqrt{3} }{3}  =  \frac{ - 3 \sqrt{3}  - 2 \sqrt{3} }{6}  =  -  \frac{5 \sqrt{3} }{6}

5

 -  \cos(0^{\circ} )  + tg(30^{\circ} ) - ctg(45^{\circ} ) +  \sin(60^{\circ} )  =  \\  =  - 1 +  \frac{ \sqrt{3} }{3}  - 1 +  \frac{ \sqrt{3} }{2}  =  \\  =  \frac{ - 6 + 2 \sqrt{3} + 3 \sqrt{3}  }{6}  =  \frac{5 \sqrt{3} - 6 }{6}

6

tg(0^{\circ} ) - ctg( 90^{\circ} ) -  \sin(0^{\circ} )  -  \cos(90^{\circ} )  = 0 \\

Похожие вопросы