Предмет: Геометрия, автор: andreyshadow1

Без решения (можно только ответ)

Приложения:

Ответы

Автор ответа: MrSolution
2

Ответ:

(см. объяснение)

Объяснение:

Рассмотрим плоскость (AST). Заметим, что BC⊥(AST), так как BC⊥SO и BC⊥AT и SO∩AT=O. Тогда BC перпендикулярна любой прямой, лежащей в этой плоскости. Опустим теперь перпендикуляр AH из точки A на ST в плоскости (AST). Получим, что AH⊥ST и AH⊥BC и ST∩BC=T. Тогда AH⊥(BSC), т.е. является искомым расстоянием. Найдем теперь AH. Приравняв площади треугольника, получим, что AH=\dfrac{AT\times SO}{ST}. Понятно, что AT ищем по теореме Пифагора для треугольника ATC: AT²=AC²-TC², => AT=4√3. ST ищем по той же теореме Пифагора, но для треугольника STC: ST²=SC²-TC² => ST=2√21. Перед тем, как искать SO, вспомним, что медианы точкой пересечения делятся 2:1, считая от вершины. Тогда OT=4/√3 => SO=2√177/3 (опять-таки по теореме Пифагора для треугольника OST). Значит AH=\dfrac{4\sqrt{1239}}{21}. Приведем теперь ответ к требуемому виду: 21\times\left(\dfrac{4\sqrt{1239}}{21}\right)^2=944.

Задание выполнено!

Приложения:
Похожие вопросы
Предмет: Алгебра, автор: Mайер