Предмет: Геометрия, автор: shishelovalazertag

Запишите уравнение плоскости, проходящей через точки M0(7,2,9) и M1(7,3,10) параллельно вектору
e¯¯¯={1,−6,−4}
Уравнение плоскости запишите в виде Ax+By+z+D=0.
В ответ через точку с запятой введите значения:
A;B;D

Ответы

Автор ответа: dnepr1
0

Дан параллельный вектор e¯¯¯={1,−6,−4}.

Для уравнения плоскости нужен нормальный (то есть перпендикулярный) вектор.

Их произведение (скалярное) равно нулю.

Примем одну координату за 0 - по оси Oz.

Получим нормальный вектор (6; 1; 0)

В уравнение плоскости подставим координаты точки М0:

6*(x - 7) + 1*(y - 2) + 0*(z - 9) = 0.

6x - 42 + y - 2  = 0, получаем уравнение:

6x + y - 42 = 0.

Делаем проверку - подставляем координаты точки M1(7,3,10).

6*7 + 3 - 42 = 3. Не проходит плоскость через эту точку.

Тогда нормальный вектор находим как векторное произведение векторов М0М1 и e¯¯¯={1,−6,−4}.

Вектор М0М1 = M1(7,3,10) - M0(7,2,9) = (0; 1; 1)

i      j      k|     i     j

0    1      1|     0    1

1    -6   -4|    1      -6  = -4i + 1j + 0k -0j + 6i - 1k = 2i + 1j - 1k.

Получаем координаты нормального вектора (2; 1; -1) и точку M0(7,2,9).

Уравнение плоскости: 2(x - 7) + 1(y - 2) - 1(z - 9) = 0.

2x - 14 + y - 2 - z + 9 = 0.

2x  + y  - z - 7 = 0.

Проверяем М0: 2*7 + 1*2 - 1*9 - 7 = 14 + 2 - 9 - 7 = 0,

          M1(7,3,10): 2*7 + 1*3 -1*10 - 7 = 14 + 3 - 10 - 7 = 0.

Верно.

Ответ: уравнение плоскости 2x  + y  - z - 7 = 0.                  

Похожие вопросы
Предмет: Информатика, автор: vfujfrty
Предмет: Математика, автор: mileimultashli