Предмет: Геометрия,
автор: ksunya08
Помогите пожалуйста, ОЧЕНЬ СРОЧНО!!!
3. В ABC проведена биссектриса BD, A = 60°, C = 40°.
a) Докажите, что BDC равнобедренный.
b) Сравните отрезки AD и DC.
Ответы
Автор ответа:
3
Ответ:
Сумма углов треугольника равна 180°.
В ΔABC:
∠A+∠B+∠C = 180°;
∠B = 180°-(∠A+∠C) = 180°-(60°+40°) = 80°.
Биссектриса делит угол пополам.
∠DBC = ∠ABC:2 = 80°:2 = 40°, как угол при биссектрисе BD.
Если в треугольника два угла равны, то он равнобедренный.
∠DBC = 40° = ∠DCB ⇒ ΔDBC - равнобедренный, ч.т.д.
Стороны треугольника, лежащие напротив равных углов, равны.
В ΔDBC:
сторона BD лежит напротив ∠DCB;
сторона DC лежит напротив ∠DBC;
∠DBC = ∠DCB ⇒ BD = DC.
Ответ: BD = DC.
Объяснение: поставьте ответ лучшим
ksunya08:
спасибо
Похожие вопросы
Предмет: Английский язык,
автор: yulechkacherna
Предмет: Русский язык,
автор: Аноним
Предмет: Русский язык,
автор: irinalitina
Предмет: Математика,
автор: shipilovdanil0danil