Предмет: Геометрия, автор: naastoon

Коло, радіуса 12см, вписане в кут, який дорівнює 40˚. Знайдіть довжину більшої дуги кола, що обмежена точками дотику до сторін кута.

Ответы

Автор ответа: abriutin
2

Ответ:

14 2/3  π cм

Объяснение:

1) В четырёхугольнике, образованном углом 40°, двумя углами каждый по 90° (углы между радиусами окружности и касательными), четвертый угол (между двумя радиусами, перпендикулярными к касательным) равен:

360° - 40° - 90° - 90° = 360° - 220° = 140°  - центральный угол, опирающийся на меньшую дугу.

2) Находим градусную меру большей дуги:

360° - 140° = 220°.

3) Длина окружности радиуса R = 12 см равна:

L = 2πR = 2π · 12 = 24π

4) Длина большей дуги:

L₁ = 24π · (220/360) = 14 2/3  π cм ≈ 46,05 см

Ответ: 14 2/3  π cм

Похожие вопросы
Предмет: Математика, автор: valentin43
Предмет: Информатика, автор: nastya220604