Предмет: Алгебра, автор: kuanyshev187

f(x)=x^4-1 исследуйте функцию пожалуйста дам 25баллов​


regina2324: Так -1 или -х?
regina2324: Может там х^4-х??

Ответы

Автор ответа: русланастамиров
1

Ответ:

Объяснение:

Для начала найдем область определения функции, и ее потенциальные точки разрыва

1)D(f)=R, точек разрыва нет

2) проверим функцию на четность, очевидно функция четная, т.к. при подстановке вместо икс минус икс функция вида не изменит.

3) найдем нули функции и знак функции на полученных интервалах, для этого разложим функцию на составляющие x^4-1=(x^2-1)(x^2+1)=(x-1)(x+1)(x^2+1)

Приравняем это к нулю, тогда x=1 x=-1

Исследуем знак функции на промежутках от минус бесконечности до минус 1, от минус 1 до 1, и от 1 до +бесконечности. Для этого подставим любую точку из промежутков и получим знаки +-+ (значит на промежутке от -беск до -1 и от 1 до+беск, функция выше оси Ох, на промежутке -1 до 1 функция ниже оси Ох)

приравняв к нулю икс, получим игрик равный -1

4)найдем ассимптоты, так как точек разрыва нет, то и вертикальных ассимптот нет, найдем наклонную асимптоту, для этого вычислим предел

\lim_{x \to \infty} (x^4-1)/x стремится к бесконечности, а значит ассимптот нет

5)Исследуем точки экстремума и интервалы монотонности, тогда найдем производную

4x³  и приравняем ее к нулю 4x³=0, откуда x=0. Найдем знаки слева и справа от нуля, слева минус справа плюс, значит слева от нуля функция убывает, а справа возрастает. Т.к. 0 принадлежит области определения функция, то подставим его в изначальное уравнение, получим -1. Точка (0,-1) - точка экстремума, т.к. в этой точке производная меняет знак с минуса на плюс, то это точка минимума

6) найдем точки перегиба. Для этого найдем вторую производную - производную от производной = 12x^2. приравняем к нулю и вновь получим 0, найдем знаки слева и справа, с обеих сторон +, значит функция выпукла вниз на всей области определения, и точка 0 не является точкой перегиба

7) нужно построить график по всем значениям которые мы получили

Приложения:
Похожие вопросы
Предмет: Русский язык, автор: islamdidar
Предмет: Английский язык, автор: Olgababenko20