Предмет: Геометрия,
автор: almaskaztaj018
дан треугольник АВС, высотаВД=8 см, АД=15 см, ДС=6см, Найдите радиусы вписанной и описанной окрожностей.
Ответы
Автор ответа:
4
Дан треугольник АВС, высота ВД=8 см, АД=15 см, ДС=6 см.
Сторона АС = 15 + 6 = 21 см.
Отсюда находим площадь треугольника.
S = (1/2)ah = (1/2)*21*8 = 84 см².
Теперь используем формулы радиуса.
Радиус r вписанной окружности равен отношению площади треугольника к его полупериметру.
Находим неизвестные стороны.
АВ = √(15² + 8²) = √(225 + 64) = √289 = 17 см.
ВС = √(6² + 8²) = √(36 + 64) = √100 = 10 см.
Полупериметр р = (17 + 10 + 21)/2 = 48/2 = 24 см.
Находим: r = S/p = 84/24 = 3,5 см.
Радиус R описанной окружности равен:
R = abc/(4S) = 17*10*21/(4*84) = 10,625 см.
Похожие вопросы
Предмет: Русский язык,
автор: Аноним
Предмет: Русский язык,
автор: dfhhjbh
Предмет: Русский язык,
автор: Ханна04
Предмет: История,
автор: крыска5
Предмет: Физика,
автор: PozziTiv4ikYT