Предмет: Алгебра, автор: maxx22032017

Алгебра 10клас, помогите пожалуйста! Задания на фото

Приложения:

Ответы

Автор ответа: Miroslava227
1

Ответ:

1

  \cos {}^{2} ( \alpha ) +  \sin {}^{2} ( \alpha )  + tg {}^{2} ( \beta )  =   \\ =  1 +  {tg}^{2}  (\beta ) =  \frac{1}{ \cos {}^{2} ( \beta ) }

2

 \frac{1 -  \cos {}^{2} ( \alpha ) }{ 1 - \sin {}^{2} ( \alpha ) } +  tg( \alpha ) \times ctg( \alpha ) =  \\  =  \frac{ \sin {}^{2} ( \alpha ) }{ \cos {}^{2} ( \alpha ) }  + 1 =  {tg}^{2} ( \alpha ) + 1 =  \frac{1}{ \cos {}^{2} ( \alpha ) }

3

 \frac{1}{1 +  {tg}^{2}  \alpha }  +  \sin {}^{2} ( \alpha )  =  \\  =  \frac{1}{ \frac{1}{ \cos {}^{2} ( \alpha ) } }  +  \sin {}^{2} ( \alpha )  =  \\  =  \cos {}^{2} ( \alpha )  +  \sin {}^{2} ( \alpha )  = 1

4

ctg \alpha  -  \frac{ \sin( \alpha ) }{ 1 - \cos( \alpha ) }  =  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  -  \frac{ \sin( \alpha ) }{ 1  - \cos( \alpha ) }  =  \\  =  \frac{ \cos( \alpha )(1 -  \cos( \alpha )) -   \sin( \alpha )  \times  \sin( \alpha )  }{ \sin( \alpha ) (1 - \cos( \alpha ))  }  =  \\  =  \frac{ \cos  ( \alpha )  -  \cos {}^{2} ( \alpha )   -  \sin {}^{2} ( \alpha )}{ \sin( \alpha ) (1 -  \cos( \alpha ) )}  =  \\  =  \frac{ \cos( \alpha )  - 1}{ \sin( \alpha ) (1 - \cos( \alpha ) ) }  =  -  \frac{1}{ \sin( \alpha ) }

5

 \sin(  - \alpha )  \cos(  - \alpha ) (tg \alpha  + ctg \alpha ) =  \\  =  -  \sin( \alpha )  \cos( \alpha )  \times ( \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  +  \frac{ \cos( \alpha ) }{ \sin( \alpha ) })  =  \\  =  -  \sin( \alpha )  \cos( \alpha )  \times  \frac{ \sin {}^{2} ( \alpha )  +  \cos {}^{2} ( \alpha ) }{ \sin( \alpha )  \cos( \alpha ) }  =  \\  =  - 1

Автор ответа: DimaPuchkov
0

1)

\cos^2{(\alpha)}+\sin^2{(\alpha)}+tg^2 \, \beta =1 +tg^2 \, \beta =\frac{1}{cos^2{\beta }}

2)

\frac{1-\cos^2{\alpha}}{1-\sin^2{\alpha}}+tg \, \alpha \cdot ctg \, \alpha=\frac{\sin^2{\alpha}}{\cos^2{\alpha}}+1=tg^2\, \alpha +1 = \frac{1}{\cos^2{\alpha}}

3)

\frac{1}{1+tg^2 \, \alpha}+\sin^2{\alpha}=\frac{1}{\frac{1}{\cos^2{\alpha}}}+\sin^2{\alpha}=\cos^2{\alpha}+\sin^2{\alpha}=1

4)

ctg \, \alpha - \frac{\sin{\alpha}}{1-\cos{\alpha}}=\frac{\cos{\alpha}}{\sin{\alpha}}-\frac{\sin{\alpha}}{1-\cos{\alpha}}=\frac{\cos{\alpha}\cdot (1-\cos{\alpha})-\sin^2{\alpha}}{\sin{\alpha}\cdot (1-\cos{\alpha})}=\frac{\cos{\alpha}-\cos^2{\alpha}-\sin^2{\alpha}}{\sin{\alpha} \cdot (1-cos{\alpha})}= \\ \\ = \frac{\cos{\alpha}-(\cos^2{\alpha}+\sin^2{\alpha})}{\sin{\alpha} \cdot (1-cos{\alpha})}=\frac{\cos{\alpha}-1}{\sin{\alpha}\cdot(1-\cos{\alpha})}=

=-\frac{1-\cos{\alpha}}{\sin{\alpha}\cdot (1-\cos{\alpha)}}=-\frac{1}{\sin{\alpha}}

5)

\sin{(-\alpha)}\cdot \cos{(-\alpha)}\cdot(tg \, \alpha + ctg \, \alpha})=-\sin{\alpha}\cdot \cos {\alpha}\cdot (\frac{\sin{\alpha}}{\cos{\alpha}}+\frac{\cos{\alpha}}{\sin{\alpha}})=\\ \\ =-\sin^2{\alpha}-\cos^2{\alpha}=-(\sin^2{\alpha}+\cos^2{\alpha})=-1

Похожие вопросы