Предмет: Математика,
автор: igor86russ
Помогите решить. Математика 10 кл.
Приложения:
Ответы
Автор ответа:
0
a) 2sin x+√2 = 0
2sin x = -√2
sin x = -√2 /2
x = Arc sin (-√2 / 2) = k * pi + (-1)^k * (pi/4)
б) cos (x/2 + pi / 4) - 1 = 0
x/2 + pi / 4 = Arc cos 1 = 2*k*pi
x/2 = 2*k*pi - pi / 4
x = 4*k*pi - pi / 2
в) cos (2*pi - x) - sin (3*pi / 2 + x) = 1
cos x) - (-cos x) = 1
2cos x = 1
cos x = 1/2
x = Arc cos (1/2) = 2*k*pi+-pi / 3
г) 3sin^2 x + 7cos x - 3 = 0
3(1 - cos^2 x) + 7cos x - 3 = 0
3 - 3cos^2 x + 7cos x - 3 = 0
cos x(7 - 3cos x) = 0
cos x(1) = 0
x(1) = Arc cos 0 = 2*k*pi +- pi / 2
7 - 3cos x(2) = 0
3cos x(2) = 7
cos x(2) = 7 /3 не возможно.
д) sin^2 x - sin x *cos x = 0
sin x (sin x - cos x) = 0
sin x(1) = 0
x(1) = Arc sin 0 = k*pi
sin x - cos x = 0
sin x = cos x
x = 2*k*pi + pi / 4 (1 четверть)
2sin x = -√2
sin x = -√2 /2
x = Arc sin (-√2 / 2) = k * pi + (-1)^k * (pi/4)
б) cos (x/2 + pi / 4) - 1 = 0
x/2 + pi / 4 = Arc cos 1 = 2*k*pi
x/2 = 2*k*pi - pi / 4
x = 4*k*pi - pi / 2
в) cos (2*pi - x) - sin (3*pi / 2 + x) = 1
cos x) - (-cos x) = 1
2cos x = 1
cos x = 1/2
x = Arc cos (1/2) = 2*k*pi+-pi / 3
г) 3sin^2 x + 7cos x - 3 = 0
3(1 - cos^2 x) + 7cos x - 3 = 0
3 - 3cos^2 x + 7cos x - 3 = 0
cos x(7 - 3cos x) = 0
cos x(1) = 0
x(1) = Arc cos 0 = 2*k*pi +- pi / 2
7 - 3cos x(2) = 0
3cos x(2) = 7
cos x(2) = 7 /3 не возможно.
д) sin^2 x - sin x *cos x = 0
sin x (sin x - cos x) = 0
sin x(1) = 0
x(1) = Arc sin 0 = k*pi
sin x - cos x = 0
sin x = cos x
x = 2*k*pi + pi / 4 (1 четверть)
Автор ответа:
0
Спасибо тебе! Ты даже не можешь представить как ты мне помог!
Похожие вопросы
Предмет: Химия,
автор: Аноним
Предмет: Математика,
автор: evaageeva09inboxru
Предмет: Қазақ тiлi,
автор: Аноним
Предмет: Физика,
автор: Позитиффчик1