Помогите срочно
y=-4x+5
Ответы
Пошаговое объяснение:
y(х) = - 4x + 5
Исследуем данную функцию :
1) Область определения данной функции : множество всех действительных чисел : x ∈ R
2) Область допустимых значений : множество всех действительных чисел : y ∈ R
3) Четность, нечетность функции.
Функция f(x) называется четной, если f(-x)= f (x).
y(x) - y(-x) = (-4x + 5 ) - ( -4(-x)+5) = -4x + 5 + 4(-x) - 5 = -4x + 5 - 4x - 5 =
= -4x + 5 - 5 - 4x = - 4x + 0 - 4x = -4x - 4x = (-8)x = -8x
-8x ≠ 0
y(-x) ≠ y(x)
функция не является четной
Функция f(x) называется нечетной, если f(-x)=-f(x).
y(x) + y(-x) = (-4x + 5 ) + ( -4(-x) + 5) = -4x + 5- 4(-x) +5 = -4x + 5 + 4x + 5 = 10
10 ≠ 0
y(-x) ≠ - y(x)
функция не является нечетной
4) Точки пересечения с осью x :
-4x+5=0
-4x= - 5
x = -5 : (-4) = 1,25
x= 1,25
Точки пересечения с осью y :
при х= 0
y(0) = 4*0+5 = 5
y = 5
5) Асимптоты функции .
Функция y(x) = -4x + 5 асимптот не имеет
6) Экстремумы .
Точка экстремума функции - это точка области определения функции, в которой значение функции принимает минимальное или максимальное значение.
Производная :
(-4x+5)' = -(4x)'+(5)'=-4x'+0=-4x'=-4
y'(x)=-4
Для нахождения критических точек приравняем первую производную к нулю и решим полученное уравнение.
-4=0 нет решений
У функции нет экстремумов.
7) Точки перегиба .
Вторая производная: y''(x)=0
0 = 0
У функции нет точек перегиба.
8) Построим график функции y = - 4x + 5
угловой коэффициент : (- 4)
при х = 0
y = 5
при х = 1
y = 1
График во вложении