Помогите Пожалуйста
Ответы
Ответ:
а = 30,35;
∠α = 103,22°;
∠γ = 16,78°;
R = 15,59;
r = 3,57;
S = 118,28.
Объяснение:
1) Согласно теореме синусов:
b : sin β = c : sin γ
sin γ = (sin β · c) : b = √3/2 · 9 : 27 = √3/6
∠γ = arcsin √3/6 = 16,78°
2) ∠α = 180° - ∠β - ∠γ = 180° - 60° - 16,78° = 103,22°
sin 103,22° = 0,9735
3) c : sin γ = а : sin α
а = с · sin α : sin γ = 9 · 0,9735 : √3/6 = 30,35
4) S = (b · c · sin α) : 2 = 27 · 9 · 0,9735 : 2 ≈ 118,28 ед.изм.²
или
S = (b · а · sin γ) : 2 = 27 · 30,35 · √3/6 : 2 ≈ 118,28 ед.изм.²
или
S = (а · c · sin β) : 2 = 30,35 · 9 · √3/2 : 2 ≈ 118,28 ед.изм.²
5) R = (a · b · c) : 4S = (30,35 · 27 · 9) : (4 · 118,28) = 7375,05 : 473,12 = 15,59
6) r = S : р = S : (a/2 + b/2 +c/2) = 118,28 : (66,35 : 2) = 118,28 : 33,175 = 3,57
Ответ: а = 30,35; ∠α = 103,22°; ∠γ = 16,78°; R = 15,59; r = 3,57; S = 118,28.