Предмет: Математика, автор: Delensi01


 log_{5 {}^{2} }(x)  + 2log_{5}(x)  - 3 = 0
Можно ли решить этот пример заменой? Если да, то как?​

Ответы

Автор ответа: qweqwefifififi
1

Ответ:

x = 5 и x = 1/125

Пошаговое объяснение:

Можно заменой и даже нужно!)

=========================

Сразу делаем замену: пускай log_5x=t. Подставляем значение в уравнение:

t^2+2t-3=0 - квадратное уравнение, можем решить его через дискриминант.

D=4-4*1*(-3)=4+12=16\\\sqrt{D}=4\\\\t_1=\frac{-2+4}{2}=\frac{2}{2}=1\\t_2=\frac{-2-4}{2}=-\frac{6}{2}=-3 - нашли корни уравнения. Можем сделать обратную замену.

--------------------------------------------

Обратная замена:

log_5x=1\\log_5x=-3

Зная свойство логарифма (log_aba^x=b) можем решить уравнения выше.

5^1=x => x=5\\5^{-3}=x => x=\frac{1}{5^3}=\frac{1}{125}=0.008

Похожие вопросы
Предмет: Алгебра, автор: Supan228
Предмет: Физика, автор: Ира228228228