Предмет: Алгебра, автор: kdkdkekdickdkcidkcid

В прямоугольнике ABCD AD=10 см,AB=12 см.Через середину K стороны BC проведён перпендикуляр MK к его плоскости,равный 5 см. вычислите: а)расстояние от
точки M до прямой AD; б)площади треугольника AMB и его проекции на плоскость данного треугольника;в)расстояние между прямыми BM и AD.
РЕШИТЬ С ЧЕРТЕЖОМ И ОБЪЯСНЕНИЯМИ.НЕ БЕРИТЕ ОТВЕТЫ ДРУГИХ

Ответы

Автор ответа: fdgttdsrjh
1

Ответ:

Расстоянием от точки М до прямой АД есть перпендикуляр МН проведенный к стороне АД.

Длина отрезка КН = АВ = 12 см, так как они перпендикулярны АД и ВС. Тогда, по теореме Пифагора, МН2 = МК2 + КН2 = 25 + 144 = 169.

МН = 13 см.

Так как МК перпендикулярно АВСД, то плоскость МКВ так же перпендикулярна прямоугольнику АВСД, а следовательно, треугольник ВМК прямоугольный. Так как точка К середина ВС то ВК = 10 / 2 = 5 см.

Тогда ВМ = 5 * √2 см. Площадь треугольника АВМ будет равна: Sавм = АВ * ВМ / 2 = 12 * 5 * √2 / 2 = 30 * √2 см2.

Проекция треугольника АВМ на прямоугольник есть треугольник АВК, тогда Sавк = АВ * ВК / 2 = 12 * 5 / 2 = 30 см2.

Расстоянием между прямыми ВМ и АД есть сторона АВ прямоугольника, так как она перпендикулярна обоим прямым. АВ = 12 см.

Ответ: От точки М до АД 13 см. Площадь треугольника АВМ равна 30 * √2 см2. Площадь треугольника АВК равна 30 см2. Между прямыми ВМ и АД 12 см.

Похожие вопросы
Предмет: Русский язык, автор: Komics