Предмет: Геометрия, автор: marinadenisova2019

Помогите решить с пояснением, не только ответ, пожалуйста

Трапеция ABCD вписана в окружность (AD II BC), AB=13, BC=7, периметр 50. Найти:
1. CD и AD
2.среднюю линию трапеции
3. Площадь трапеции
4. tg/_BAD
5.cos /_ BCD
6.AC
7.радиус вписанной окружности
8.радиус описанной окружности

Ответы

Автор ответа: orjabinina
7

Трапеция ABCD вписана в окружность (AD II BC), AB=13, BC=7, периметр 50. Найти:   1. CD и AD  ;  2.среднюю линию трапеции  ;  3. Площадь трапеции  ;  4. tg∠BAD  ;   5.cos ∠BCD  ;  6.AC  ;  7.радиус вписанной окружности  ;  8.радиус описанной окружности.

Объяснение:

1) Описать окружность можно только около равнобедренной трапеции ⇒ CD=13 , Тогда AD=50-(2*13+7)=17.

2)Средняя линия равна полусумме оснований : \frac{AD+BC}{2} =\frac{7+17}{2} =12  .

3) S (трапеции) =1/2*h*(a+b)  .Отложим от точки D отрезок DK=BC. Тогда  S (трапеции) =S (ΔАВК) , т.к высоты этих фигур равны .

Пусть ВН⊥АD,  АН=  \frac{17-7}{2} = 5 . Из ΔАВН , по т. Пифагора

ВН=√(13²-5²)=  √( (13+5)(13-5))=√(18*8)=12 .

S (трапеции)=1/2*12*(17+7)=144 (ед²).

4) ΔАВН-прямоугольный, tg∠BAD= \frac{BH}{AH}  , tg∠BAD= \frac{12}{5}  , tg∠BAD=2,4 .

5) cos∠BCD= cos∠ABC, тк углы при основании равны.

cos∠ABC=cos(90°+∠АВН) =( по формулам приведения)=- sin∠ABН

Из ΔАВН,  sin∠ABН =\frac{AH}{AB}  , sin∠ABН =\frac{5}{13}  . Получаем  cos∠BCD=- \frac{5}{13}  .

6) ΔАВС , по т. косинусов АС²=АВ²+ВС²-2*АВ*ВС*cos∠ABC,

AC²=169+49-2*13*7*( - \frac{5}{13}  ) , AC²=218+70 ,  AC²=288 , AC=12√2.

7) Из формулы S=1/2*P*r , r=(2*S)/P . r=\frac{2*144 }{50}  ,  r =5,76

8) Радиус описанной окружности для трапеции совпадает с радиусом описанной окружности для ΔАВС. Найдем R для ΔАВC по т. синусов

\frac{AC}{sin ABC} =2R ,  \frac{AC}{sin ABC} =2R .

sin∠ABC=sin(90+∠ABH)=( по формулам приведения) =сos∠ABH.

ΔABH , сos∠ABH=\frac{BH}{AB}  , сos∠ABH=\frac{12}{13}  .Поэтому   sin∠ABC= \frac{12}{13}  .

2R = \frac{12\sqrt{2} }{ \frac{12}{13} }   , R=6,5√2 .

Приложения:
Похожие вопросы
Предмет: Русский язык, автор: 30309986
Предмет: Математика, автор: файруз1