Предмет: Алгебра, автор: Аноним

1) \frac{x}{x-2} + \frac{3}{x} = \frac{3}{x-2} \\\\2) \frac{x^{2} }{x^{2}+3x } + \frac{2-x}{x+3} = \frac{5-x}{x} \\\\3) \frac{y+3}{y^{2} - y } + \frac{6-y}{1-y^{2} } = \frac{y+5}{y+y^{2} }


Zombynella: Насколько срочно? Смогу завтра)
Аноним: а завтра нужно сдать
Аноним: очень срочно
Zombynella: В какое время по Москве?
Аноним: до 6:00
Zombynella: Ясно.
Zombynella: Спасибо)

Ответы

Автор ответа: NNNLLL54
2

Ответ:

1)\ \ \dfrac{x}{x-2}+\dfrac{3}{x}=\dfrac{3}{x-2}\ \ ,\ \ \ ODZ:\ x\ne 0\ ,\ x\ne 2\ ,\\\\x^2+3(x-2)=3x\\\\x^2+3x-6=3x\ \ ,\ \ \ x^2-6=0\ \ ,\ \ (x-\sqrt6)(x+\sqrt6)=0\ \ ,\\\\x_1=-\sqrt6\ ,\ \ x_2=\sqrt6\\\\Otvet:\ \ x_1=-\sqrt6\ ,\ \ x_2=\sqrt6\ .

2)\ \ \dfrac{x^2}{x^2+3x}+\dfrac{2-x}{x+3}=\dfrac{5-x}{x}\ \ ,\ \ \ \ ODZ:\ x\ne 0\ ,\ x\ne -3\ ,\\\\\\\dfrac{x^2}{x\, (x+3)}+\dfrac{2-x}{x+3}=\dfrac{5-x}{x}\ \ ,\ \ \ x^2+x\, (2-x)=(5-x)(x+3)\ \ ,\\\\\\x^2+2x-x^2=5x+15-x^2-3x\ \ ,\ \ \ x^2=15\ \ ,\ \ \ x=\pm \sqrt{15}\\\\Otvet:\ \ x_1=-\sqrt{15}\ \ ,\ \ x_2=\sqrt{15}\ .

3)\ \ \dfrac{y+3}{y^2-y}+\dfrac{6-y}{1-y^2}=\dfrac{y+5}{y+y^2}\ \ ,\ \ \ ODZ:\ y\ne 0\ ,\ y\ne \pm 1\ ,\\\\\\\dfrac{y+3}{y\, (y-1)}+\dfrac{6-y}{(1-y)(1+y)}=\dfrac{y+5}{y(1+y)}\ \,\\\\\\\dfrac{y+3}{y\, (y-1)}-\dfrac{6-y}{(y-1)(y+1)}=\dfrac{y+5}{y(y+1)}\\\\\\(y+3)(y+1)-y\, (6-y)=(y+5)(y-1)\\\\y^2+4y+3-6y+y^2=y^2+4y-5\\\\2y^2-2y+3=y^2+4y-5\\\\y^2-6y+8=0\ \ ,\ \ \  y_1=2\ \ ,\ \ y_2=4\ \ \ (teorema\ Vieta)\\\\Otvet:\ \ y_1=2\ \ ,\ \ y_2=4\ .


Аноним: спасибо!
Аноним: огромное!
Ternov21: https://znanija.com/task/42771711?utm_source=android&utm_medium=share&utm_campaign=question
Автор ответа: Zombynella
1

Ответ:

В решении.

Объяснение:

Решить уравнения:

1) х/(х - 2) + 3/х = 3/(х - 2)

Умножить все части уравнения на х(х - 2), чтобы избавиться от дробного выражения:

х*х + 3*(х - 2) = 3*х

х² + 3х - 6 = 3х

х² + 3х - 6 - 3х = 0

х² = 6

х = ±√6.

2) х²/(х² + 3х) + (2 - х)/(х + 3) = (5 - х)/х

х²/х(х + 3) + (2 - х)/(х + 3) = (5 - х)/х

х/(х + 3) + (2 - х)/(х + 3) = (5 - х)/х

Умножить все части уравнения на х(х + 3), чтобы избавиться от дробного выражения:

х*х + (2 - х)*х = (5 - х)*(х + 3)

х² + 2х - х² = 5х + 15 - х² - 3х

х² + 2х - х² - 5х - 15 + х² + 3х = 0

х² - 15 = 0

х² = 15

х = ±√15.

3) (у + 3)/(у² - у) + (6 - у)/(1 - у²) = (у + 5)/(у + у²)

В знаменателях вынести общие множители, где нужно, и преобразовать знаменатель второй дроби вынесением минуса:

(у + 3)/у(у - 1) + (6 - у)/-(у² - 1) = (у + 5)/у(1 + у)

Тогда плюс перед второй дробью заменится на минус, и нужно расписать в знаменателе второй дроби разность квадратов:

(у + 3)/у(у - 1) - (6 - у)/(у - 1)(у + 1) = (у + 5)/у(1 + у)

Умножить все части уравнения на у(у - 1)(у + 1), чтобы избавиться от дробного выражения:

(у + 3)*(у + 1) - (6 - у)*у = (у + 5)*(у - 1)

Раскрыть скобки:

у² + у + 3у + 3 - 6у + у² = у² - у + 5у - 5

у² + у + 3у + 3 - 6у + у² - у² + у - 5у + 5 = 0

у² - 6у + 8 = 0, квадратное уравнение, ищем корни:

D=b²-4ac =36 - 32 = 4         √D= 2

х₁=(-b-√D)/2a

х₁=(6-2)/2

х₁=4/2

х₁=2;                

х₂=(-b+√D)/2a  

х₂=(6+2)/2

х₂=8/2

х₂=4.

Проверка путём подстановки  вычисленных значений х в уравнения показала, что данные решения удовлетворяют данным уравнениям.


Аноним: спасибо огромное за объяснение !
Аноним: лучший ответ!
Zombynella: ))
Ternov21: https://znanija.com/task/42771711?utm_source=android&utm_medium=share&utm_campaign=question
Похожие вопросы
Предмет: Русский язык, автор: мон1
Предмет: Физика, автор: seffche