Предмет: Математика, автор: bogdan2959

Решите неравенства
|2x+1|<3
|3x-2|>7
|4x+3|≥5
|1-2x|≤5

Ответы

Автор ответа: ksyuwi
5

|2x+1|&lt;3\\\\\left \{ {{2x+1&lt;3} \atop {2x+1&lt;-3}} \right. \\\\\left \{ {{2x&lt;3-1} \atop {2x&lt;-3-1}} \right. \\\\\left \{ {{2x&lt;2} \atop {2x&lt;-4}} \right. \\\\\left \{ {{x&lt;2:2} \atop {x&lt;-4:2}} \right. \\\\\left \{ {{x&lt;1} \atop {x&lt;-2}} \right.

x ∈ ( -∞ ; -2 )

|3x-2|&gt;7\\\\\left \{ {{3x-2&gt;7} \atop {3x-2&gt;-7}} \right. \\\\\left \{ {{3x&gt;7+2} \atop {3x&gt;-7+2}} \right. \\\\\left \{ {{3x&gt;9} \atop {3x&gt;-5}} \right. \\\\\left \{ {{x&gt;9:3} \atop {x&gt;-5:3}} \right. \\\\\left \{ {{x&gt;3} \atop {x&gt;-1\frac{2}{3} }} \right. \\

x ∈ ( 3 ; +∞ )

|4x+3|\geq 5\\\\\left \{ {{4x+3\geq 5} \atop {4x+3\geq -5}} \right. \\\\\left \{ {{4x\geq 5-3} \atop {4x\geq -5-3}} \right. \\\\\left \{ {{4x\geq 2} \atop {4x\geq -8}} \right. \\\\\left \{ {{x\geq 2:4} \atop {x\geq -8:4}} \right. \\\\\left \{ {{x\geq 0,5} \atop {x\geq -2}} \right.

x ∈ [ 0,5 ; +∞ )

|1-2x|\leq 5\\\\\left \{ {{1-2x\leq 5} \atop {1-2x\leq -5}} \right. \\\\\left \{ {{-2x\leq 5-1} \atop {-2x\leq -5-1}} \right. \\\\\left \{ {{-2x\leq 4} \atop {-2x\leq -6}} \right. \\\\\left \{ {{x\geq 4:-2} \atop {x\geq -6:(-2)}} \right. \\\\\left \{ {{x\geq -2} \atop {x\geq 3}} \right.

x ∈ [ 3 ; +∞ )

Похожие вопросы