13 и 14 задания ПЖ
СРОЧНО НАДО
Ответы
Ответ:
Даны координаты вершин ромба ABCD: A(1;-2;7), C(4;5;7), D(-1;3;6).
1) Находим координаты точки О - центра ромба и середины диагоналей.
Середина АС: О((1+4)/2=2,5; (-2+5)/2=1,5; (7+7)/2=7) = (2,5; 1,5; 7).
Вершина В симметрична точке Д относительно точки О.
Хв = 2Хо - Хд = 2*2,5 - (-1) = 5 + 1 = 6.
Ув = 2Уо - Уд = 2*1,5 - 3 = 3 - 3 = 0.
Zв = 2Zо - Zд = 2*7 - 6 = 14 - 6 = 8.
Координаты вершины В (6; 0; 8).
Длина диагонали BD = √((-1-6)²+(3-0)²+(6-8)²) = √(49+9+4) =√62 ≈ 7,874008.
2) найти длину вектора 2AB-3BC.
Вектор АВ: (5; 2; 1), 2АВ: (10; 4; 2),
Вектор ВС: ( -2; 5; -1), 3ВС: (-6; 15; -3),
Вектор 2AB-3BC: (16; -11; 5).
Длина его L = √(16²+(-11)²+5²) = √(256 + 121 + 25) = √402 ≈ 20,04994 .
3) определить, какие из внутренних углов ромба тупые.
Определим угол между найденными векторами АВ (5;2;1) и ВС ( -2; 5; -1):
Косинус угла отрицателен, значит угол между векторами АВ и ВС (это угол А) и противолежащий ему угол С тупые.