Предмет: Геометрия,
автор: ledovskayaanastasia7
Определите, является ли отрезок AB диаметром окружности x²+6x+y²=0, если (на фото)
Приложения:
Ответы
Автор ответа:
13
Определите, является ли отрезок AB диаметром окружности x²+6x+y²=0, если А(-1 ;√5) , В(-5 ;-√5).
Объяснение:
1) Преобразуем уравнение окружности (выделим полные квадраты, если это возможно) : x²+6x+y²=0 , x²+6x+9-9+y²=0,
(х+3)²+у²=9, (х+3)²+у²=3² . Центр имеет координаты О(-3 ;0) , r=3.
2) Если АВ-диаметр , то
- А и В принадлежат окружности ( координаты удовлетворяют уравнению окружности) :
для А(-1 ;√5) → (-1)²+6*(-1)+√5²=1-6+5=0, 0=0 , лежит на окружности;
для В(-5 ;-√5)→ (-5)²+6*(-5)+(-√5)²= 25-30+5=0, 0=0 ,
лежит на окружности;
- расстояние между А и О равно 3 : АО=√( (-3+1)²+(0+√5)²)=√( 4+5)=3
Все условия выполнены, значит АВ-диаметр окружности x²+6x+y²=0.
Похожие вопросы
Предмет: Информатика,
автор: AlexJosh
Предмет: Қазақ тiлi,
автор: Nazi00
Предмет: Математика,
автор: Daniki
Предмет: Қазақ тiлi,
автор: Марго080215