Предмет: Математика, автор: evgenia98745688

Производная функция ​

Приложения:

Ответы

Автор ответа: Miroslava227
0

Ответ:

1

f'(x) = 2 \times 7 {x}^{6}  = 14 {x}^{6}

2

f'(x) =  \frac{1}{10}  \times ( - 10) {x}^{ - 11}  =  -  \frac{1}{ {x}^{11} }  \\

3

f'(x) = ( - 8 {x}^{ - 1} )' =  - 8 \times ( - 1) {x}^{ - 2}   =  \frac{8}{ {x}^{2} }  \\

4

f'(x) = (11 {x}^{ \frac{1}{2} } )' = 11 \times  \frac{1}{2}  {x}^{ -  \frac{1}{2} }  =  \frac{11}{2 \sqrt{x} }  \\

5

f'(x) = 0 \\

6

f'(x) = 13 {x}^{12}  - 33 {x}^{10}  + 8 {x}^{7}  + 16x - 1 + 0 \\

7

f'(x) =  -  \frac{1}{ { \sin}^{2}x }  + 3 \sin(x)  +  \cos(x)  \\

8

f'(x) =  \frac{1}{ { \cos }^{2} x}  + 12 {x}^{11}  -  \frac{1}{2 \sqrt{x }  }  \\

9

f'(x) =  -  \sin(x)  - 10 \times ( - 1) {x}^{ - 2}  - 2 =  \\  =  -  \sin(x)  +  \frac{10}{ {x}^{2} }  - 2

10

f'(x) = ((5x + 14) \times  {x}^{9} ) '= (5 {x}^{10}  + 14 {x}^{9} ) '=  \\  = 50 {x}^{9}  + 126 {x}^{8}

11

f'(x) = (4x - 18)'(5x + 7) + (5x + 7)'(4x - 18) =  \\  = 4(5x + 7) + 5(4x - 18) =  \\  = 20x  + 28 + 20x - 80 = 40x - 52

12

f'(x) = (10x)' \times (x - tgx) + (x - tgx)' \times 10x =  \\  = 10(x - tgx) + (1 -  \frac{1}{ { \cos }^{2}x } ) \times 10x

13

f'(x) =  \frac{(6x - 3)'(2 + 3x) - (2 + 3x)'(6x - 3)}{ {(3x + 2)}^{2} }  =  \\  =  \frac{6(3x + 2) - 3(6x - 3)}{ {(3x + 2)}^{2} }  =  \\  =  \frac{18x + 12 - 18x + 9}{ {(3x  + 2)}^{2} }  =  \frac{21}{ {(3x + 2)}^{2} }

14

f'(x) =  (\frac{5 {x}^{5} +  {x}^{4}   + x}{x} ) '= (5 {x}^{4}  +  {x}^{3}  + 1) ' = \\  = 20 {x}^{3}  + 3 {x}^{2}

15

f'(x) =  \frac{(0.5 {x}^{6}   - 1)'2 \sqrt{x} - (2 \sqrt{x} )'(0.5 {x}^{6}   - 1)}{4x}  =  \\  =  \frac{3 {x}^{5}  \times 2 \sqrt{x}  - 2 \times  \frac{1}{2} {x}^{ -  \frac{1}{2} }  \times (0.5 {x}^{6}  - 1) }{ 4x }  =  \\  =  \frac{6 {x}^{5} \sqrt{x}  -  \frac{0.5 {x}^{6} - 1 }{ \sqrt{x} }  }{4x}  =  \frac{3}{2}  {x}^{4}  \sqrt{x}  -  \frac{0.5 {x}^{6}  - 1}{4x \sqrt{x} }

16

f'(x) = 14 {(6x + 5)}^{13}  \times (6x + 5)' =  \\  = 14 {(6x + 5)}^{13}  \times 6 = 84 {(6x + 5)}^{13}

Похожие вопросы
Предмет: Немецкий язык, автор: dfrederiko
Предмет: Русский язык, автор: алиса838