Предмет: Геометрия, автор: merekeeva15

прямоугольный треугольник с катетами 3 см и 4 см вращается около гипотенузы.Найдите объем полученного тела вращения.

Ответы

Автор ответа: Hrisula
0

Ответ: 9,6π см³

Объяснение: Фигура, которая получается вращением прямоугольного треугольника около гипотенузы, имеет веретенообразную форму, т.е. вид двух конусов с общим основанием. Объём этой фигуры равен  сумме объёмов этих двух конусов

. Формула объема конуса V=H•S/3, где Н - высота конуса, Ѕ - площадь основания.

Рассмотрим рисунок с осевым сечением фигуры вращения.

Образующая  конуса (CBC₁) – катет ВС=3, высота ВО=h₁, r=CО;  образующая конуса (САС₁) - катет АС=4, высота АО=h₂, r=OC.

V(кон₁)=πr²•h₁/3

V(кон₂)=πr₂•h₁/3

V(кон₁)+V(кон₂)=πr²•(h₁+h₂)/3

h1+h2=AB - гипотенуза ∆ АВС,

По т.Пифагора АВ=√(AC²+BC²)=√(3²+4²)=5 см

r=CO=BC•AC:AB=3•4:5=2,4 см

V₁+V₂=π•2,4²•5/3=9,6π см³

Приложения:
Похожие вопросы
Предмет: Английский язык, автор: oxanaosta56
Предмет: Физика, автор: shaiahmatovazamat