Пожалуйста помогите
Ответы
Ответ:
1.
2.
3.
Ответ:
Ответ:
1.
\begin{gathered} - \sin( \frac{\pi}{2} ) (2tg( \frac{\pi}{4} ) - \cos( \frac{\pi}{6} ) ) = \\ = - 1 \times (2 - \frac{ \sqrt{3} }{2} ) = \\ = \frac{ \sqrt{3} }{2} - 2 = \frac{ \sqrt{3} - 4}{2} \end{gathered}
−sin(
2
π
)(2tg(
4
π
)−cos(
6
π
))=
=−1×(2−
2
3
)=
=
2
3
−2=
2
3
−4
2.
\begin{gathered}ctg( \frac{\pi}{6} ) \times ( \sin( \frac{\pi}{3} ) - 3 \cos( \frac{\pi}{3} ) ) = \\ = \sqrt{3} \times ( \frac{ \sqrt{3} }{2} - \frac{3} {2} ) = \\ = \sqrt{3} \times \frac{ \sqrt{3} - 3}{2} = \frac{3 - 3 \sqrt{3} }{2} \end{gathered}
ctg(
6
π
)×(sin(
3
π
)−3cos(
3
π
))=
=
3
×(
2
3
−
2
3
)=
=
3
×
2
3
−3
=
2
3−3
3
3.
\begin{gathered} \cos( \frac{\pi}{4} ) (2ctg( \frac{\pi}{4} ) - 3 \sin( \frac{\pi}{6} ) ) = \\ = \frac{ \sqrt{2} } {2} \times (2 - \frac{3}{2} ) = \frac{ \sqrt{2} }{2} \times \frac{1}{2} = \frac{ \sqrt{2} } {4} \end{gathered}
cos(
4
π
)(2ctg(
4
π
)−3sin(
6
π
))=
=
2
2
×(2−
2
3
)=
2
2
×
2
1
=
4
2