Предмет: Математика, автор: zujkovadara01

Найдите какое-нибудь число больше 100 которое при делении на 2 на 3 и на 5 даёт в остатке 1​

Ответы

Автор ответа: adrivalentine
1

Ответ:

Например, это могут быть числа: 121; 151.

Пошаговое объяснение:

Требуется найти число больше 100, которое при делении на 2, на 3, на 5 дает в остатке 1.

Найдем наименьшее общее кратное чисел 2, 3, 5.

Так как это простые числа, т.е. они делятся только на 1 и на самих себя, то НОК (2,3,5) = 2*3*5 = 30.

Тогда все числа вида 30n делятся на 2, на 3 и на 5 без остатка, а все числа вида 30n + 1 при делении на 2, на 3, на 5 дадут в остатке 1, где n ∈ Z (n - целое число).

По условию число должно быть больше 100:

30n + 1 > 100; 30n > 99; n >3,3.

⇒ все числа вида 30n + 1 , n ∈ Z, n ≥ 4 при делении на 2, на 3, на 5 дадут в остатке 1 и будут больше 100.

Например:

n = 4, 4 * 30 + 1 = 121

121 : 2 = 60 (ост. 1)

121 : 3 = 40 (ост. 1)

121 : 5 = 24 (ост. 1).

Или

n = 5, 30 * 5 + 1 = 151

151 : 2 = 75 (ост. 1 )

151 : 3 = 50 (ост. 1 )

151 : 5 = 30 (ост. 1 ).

Похожие вопросы