последние баллы отдаю,помогите пожалуйста:(
Сторона ромба равна 4 см,а острый угол-60 градусов. Точка М удалена от каждой стороны ромба на 5 см. Найдите расстояние от точки М до плоскости ромба.
Ответы
Ответ:
Если острый угол ромба 60 градусов ,то он своей малой диагональю разбивается на два равносторонних треугольника.Тогда его малая диагональ = 4 см.Диагонали ромба перпендикулярны и делятся в точке пересечения пополам.Рассмотрим прямоугольный треугольник АОВ, уголАОВ=90,АВ=4, ОВ=2 (как половина от малой диагонали ВД).По теореме Пифагора АО=square 12 (кв.корень из 12)=2*square3. Высота ОК этого треугольника, опущенная из точки О равна (АО*ОВ)/АВ (по свойству такой высоты),значит ОК=2*2*square3/4=square3. Так как стороны ромба равноудалены от точки М, то эта точка проектируется в центр окружности, вписанной в ромб.Радиусом этой окружности будет как раз высота ОК. Из прямоугольного треугольника МОК найдем ОМ.Длина перпендикуляра ОМ и есть расстояние от точки М до плоскости ромба. По теореме Пифагора ОМ=square(MK^2-OK^2)=square(25-3)=square22.
Объяснение: