Предмет: Математика, автор: krejd03

РЕШИТЕ ПОЖАЛУЙСТА ОЧЕНЬ НУЖНО 40 БАЛЛОВ ДАЮ​

Приложения:

Ответы

Автор ответа: Miroslava227
1

Ответ:

1

1.

y '=  ln(12)  \times  {12}^{x}  + 9 {x}^{2}  + 30 {x}^{4}  + 4 \sin(x)  -  \frac{4}{ x }  \\

2.

y '= 36 + 4 \times  \frac{1}{2}  {x}^{ -  \frac{1}{2} }  + 4 {e}^{x}  -  \frac{5}{ { \cos }^{2} x}  =  \\  = 36 +  \frac{2}{ \sqrt{x} }  + 4 {e}^{x}  -  \frac{5}{ { \cos }^{2}x }

3.

y' = 60 {x}^{4}  + 24 {x}^{3}  - 5 + 18 {x}^{ - 7}  + 0 - 12 {x}^{ - 4}  = \\   = 60 {x}^{4}  + 24 {x}^{3}  - 5 +  \frac{18}{ {x}^{7} }  -  \frac{12}{ {x}^{4} }

2

1.

y = u'v + v'u = ( {7}^{x}  \times  ln(7)  +  \frac{2}{x}  - 12 {x}^{3} )(7 \sqrt{x}  - 4 \cos(x) ) +  \\  + ( \frac{7}{2 \sqrt{x} }  + 4  \sin(x) )(12 +  {7}^{x}  + 2 ln(x)  - 3 {x}^{4} )

2.

y = u'v + v'u = ( - 6 {x}^{ - 2}  +  \frac{1}{ { \sin}^{2}x } )(8 {x}^{9}  - 3 {e}^{x} ) + (72 {x}^{8}  - 3 {e}^{x} )(3 \cos(5)  -  \frac{6}{x}  - ctgx) =  \\  = ( -  \frac{6}{ {x}^{2} }  +  \frac{1}{ { \sin}^{2} x} )(8 {x}^{9}  - 3 {e}^{x} ) + (72 {x}^{8}  - 3 {e}^{x} )(3 \cos(5)  -  \frac{6}{x}  - ctgx)

3.

y = (4 ln(x)  \times  {x}^{6} ) '\cos(x)  + ( \cos(x)) '(4 ln(x)  \times  {x}^{6} ) =  \\  = ((4 ln(x))'  {x}^{6}  + ( {x}^{6} )'4 ln(x) ) \cos(x)  -   \sin(x)  \times 4  {x}^{6}  ln(x)  =  \\  = ( \frac{4}{x}  \times  {x}^{6}  + 6 {x}^{5}  \times 4 ln(x))  \cos(x)  -  4{x}^{6}  ln(x)  \sin(x)  =  \\  = (4 {x}^{5}  + 24 {x}^{5}  ln(x))  \cos(x)  - 4 {x}^{6}  ln(x)  \sin(x)

3

1.

y' =  \frac{u'v  - v'u}{ {v}^{2} }  =  \frac{( - 4 \sin(x) + 39 {x}^{ - 4} )(4x - 3 {e}^{x}  -  \sqrt{6}) - (4 - 3 {e}^{x})(4 \cos(x) - 13 {x}^{ - 3}  - 2)    }{ {(4x - 3 {e}^{x}  -  \sqrt{6} )}^{2} }  =  \\  = \frac{( - 4 \sin(x) +  \frac{39}{ {x}^{4} }  )(4x - 3 {e}^{x}  -  \sqrt{6}) - (4 - 3 {e}^{x})(4 \cos(x) -  \frac{13}{ {x}^{3} }   - 2)    }{ {(4x - 3 {e}^{x}  -  \sqrt{6} )}^{2} }

2.

y '=  \frac{(1 - 6x -  {8}^{x}  \times  ln(8) -  {e}^{x} )(9 {x}^{2}  +  \cos(x))  - (18x -  \sin(x))(x - 3 {x}^{2}   -  {8}^{x}  -  {e}^{x} ) }{ {(9 {x}^{2} +  \cos(x))  }^{2} }  \\

3.

y' =  \frac{( {6}^{x}  \cos(x))' \times  {3}^{x}   -  ({3}^{x}) ' \times  {6}^{x}  \cos(x) }{ {3}^{2x} }  =  \\  =  \frac{( ln(6)  \times  {6}^{x}  \cos(x) -  {6}^{x}  \sin(x)) \times  {3}^{x}    -  {3}^{x} ln(3)   \times  {6}^{x} \cos(x)  }{ {3}^{2x} }  =  \\  =  \frac{ {3}^{x} \times  {6}^{x} ( ln(6)  \cos(x)  -  \sin(x) -  ln(3) \cos(x))  }{ {3}^{2x} }  =  \\  =  {2}^{x} ( ln(6)  \cos(x)  -  \sin(x)  -  ln(3)  \cos(x))

4

1.

y '=  \frac{1}{2 \sqrt{ ln(  { \sin }^{5}  (8 {x}^{3}  -  {6}^{x} )) } }  \times   \frac{1}{ {  \sin  }^{5} (8 {x}^{3}  -  {6}^{x}) }   \times  \\  \times 5 { \sin }^{4} (8 {x}^{3}  -  {6}^{x} ) \times  \cos(8 {x}^{3}  -  {6}^{x} )) \times (24 {x}^{2}  -  {6}^{x}  ln(6))  =  \\  =  \frac{5(24 {x}^{2} -  {6}^{x} ln(6)) \times ctg(8 {x}^{3}  -  {6}^{x}    )}{2 \sqrt{ ln( { \sin}^{5}(8 {x}^{3} -  {6}^{x}   )) } }

2.

y '= 6 {ln}^{5} ( {e}^{ {(16 {x}^{3}  + 5x)}^{ \frac{1}{3} } } ) \times  \frac{1}{ {e}^{ {(16 {x}^{3}  + 5x)}^{ \frac{1}{3} } }}  \times  {e}^{ {(16 {x}^{3}  + 5x)}^{ \frac{1}{3} } } \times  \\  \times  \frac{1}{3}  {(16 {x}^{3}  + 5x)}^{ -  \frac{2}{3} }  \times (48 {x}^{2}  + 5) =  \\  =  \frac{2(48 {x}^{2}  + 5) {ln}^{5}(  {e}^{ {(16 {x}^{3}  + 5x)}^{ \frac{1}{3} } })}{ \sqrt[3]{ {(16 {x}^{3}  + 5x) }^{2} } }

Похожие вопросы