Номер 4.1 уравнение с параметром (если не трудно,объясните, пожалуйста, как решать подобные уравнения с параметром, я совсем не понимаю()
Ответы
|x + 2|(x² – a²) > 0
Ответ:
1) a ≤ –2: x ∈ (–∞; a) ∪ (–a; +∞)
2) –2 < a < 0: x ∈ (–∞; a) ∪ (–a; +∞) \ {–2}
3) a = 0: x ∈ (–∞; +∞) \ {–2; 0}
4) 0 < a < 2: x ∈ (–∞; –a) ∪ (a; +∞) \ {–2}
5) a ≥ 2: x ∈ (–∞; –a) ∪ (a; +∞)
Объяснение:
Выражение |x + 2|(x² – a²) -- может менять знак только в точках, являющихся корнями уравнения |x + 2|(x² – a²) = 0, то есть корни делят числовую прямую на интервалы, в пределах которых знак сохраняется.
Для решения неравенства |x + 2|(x² – a²) > 0 необходимо нанести корни на числовую прямую и пометить те интервалы, на которых выражение |x + 2|(x² – a²) является положительным. Сами корни не будут входить в ответ, поскольку неравенство строгое.
Корнями являются значения x₁ = –2, x₂ = –a, x₃ = a. Существует несколько возможных вариантов расположения этих корней на числовой прямой, поэтому необходимо рассмотреть их все по отдельности (см. рисунок).