Предмет: Алгебра, автор: LKseniyaa

1)  log_6{( x^{2} - 5x)} > 1
2)  log_ frac{4}{10}  { frac{3x+1}{x-2} }  geq 1
3)  x^{3 log_2{(x+1)} }  leq 16

Ответы

Автор ответа: kage1998
0
1)
log(6) (x^2-5x)>1
log(6) (x^2-5x)>log(6) 6
x^2-5x>6
x^2-5x-6>0
дискриминант и находим отрезки
ОДЗ
x^2-5x>0
X(x-5)>0
-бесконечности до 0 и от 5 до +бесконечности
объеденяем этот отрезок с отрезком уранения x^2-5x-6>0 и выходит ответ
2)
log(4/10)((3x+1)/(x-2))>=1
log(4/10)((3x+1)/(x-2))>=log(4/10)(4/10)
(3x+1)/(x-2)>=4/10
30x+10>=4x-8
26x>=-18
x>=-18/26
ОДЗ
(3x+1)/(x-2)>0
(3x+1)*(x-2)>0       (подставляем * вместо / потому что знаки (одинаковые)сокрашаются)
находим отрезок
объеденяем и все
3)
x^(3 log(2)(x+1))<=16
x^(log(2)((x+1)^3))<=x^(log(x)16)
log(2)(x+1)^3<=log(x)16
ОДЗ
x+1>0
x>-1
x>0
x<>1
f дальше забыл как делать(если хочеш удали решение)
Похожие вопросы
Предмет: Алгебра, автор: Дарья281097