Решение текстовых задач с помощью составления уравнений. Урок 2
Катер проплыл 60 км по течению реки, затем 20 км против течения и потратил на весь путь 7 ч. Какова собственная скорость катера, если скорость течения реки равна 1 км/ч?
Ответы
Ответ:
11 км/час
Объяснение:
Пусть собственная скорость катера х км/час.
Тогда:
скорость катера по течению реки (х+1) км/час;
скорость катера против течения реки (х-1) км/час.
Воспользуемся формулой S=v*t, откуда выразим t = S/v.
Теперь у нас получится, что на путь
- по течению катер затратил времени t₁= 60 км : (х+1) км/час;
- против течения катер затратил времени t₂= 20 км : (х-1) км/час.
По условию общее время путешествия t = t₁ + t₂ = 7 часов.
Составим и решим уравнение
Корень нас не устраивает по смыслу потому, что, если бы собственная скорость катера была меньше скорости течения (1км/час), то катер бы просто не продвигался вперед, плывя против течения. Течением бы его все время сносило назад.
Значит наше решение .
Вернемся к нашим обозначениям и получим
ответ
собственная скорость катера равна 11 км/час