Предмет: Математика, автор: serator37

Найти производную функции
y=sqrt(arcctg(x/2))

Приложения:

Ответы

Автор ответа: Miroslava227
1

Ответ:

y =  \sqrt{arcctg \frac{x}{2} }  \\

y '=  \frac{1}{2}  {arcctg}^{ -  \frac{1}{2} } ( \frac{x}{2} ) \times (arcctg \frac{x}{2} )' \times ( \frac{x}{2} )' =  \\  =  \frac{1} {2 \sqrt{arcctg( \frac{x}{2} )} }  \times ( -  \frac{1}{1 +  \frac{ {x}^{2} }{4} } ) \times  \frac{1}{2}  =  \\  =  -  \frac{1}{4 \sqrt{arcctg( \frac{x}{2} )} }  \times  \frac{4}{ {x}^{2} + 4 }  =  \\  =  -  \frac{1}{( {x}^{2}  + 4) \sqrt{ arcctg( \frac{x}{2}) }  }


ptimofej397: здравствуйте, помогите пожалуйста, задание в профиле, очень прошу вас
Похожие вопросы
Предмет: Обществознание, автор: ksusha040721
Предмет: Математика, автор: Нуржан2612006