Предмет: Алгебра, автор: AidaKarimova777

Моторная лодка проплыла 24 километра по течению реки и потратила на полчаса
меньше времени, чем она плыла против течения. Определи скорость лодки в стоячей воде, если скорость течения реки – 2 км/ч. Пусть x км/ч – собственная скорость лодки.

Приложения:

asqeoq123: Класс Тема предмет?
Аноним: Алгебра

Ответы

Автор ответа: bogdansincov17
1

Пусть х- это скорость моторной лодки в стоячей воде, тогда скорость лодки против течения х-2, а скорость лодки по течению - х+2. Чтоб найти время движения, нужно расстояние, пройденное лодкой, разделить на скорость. Получим: 24/(х-2) - время, пройденное лодкой против течения реки, 16/(х+2) - время, пройденное лодкой по течению реки.

Теперь нам остается сложить время и получим 3 часа.

24/(х-2)+16/(х+2)=3

24/(х-2)+16/(х+2)-3=0

24*(х+2)/(х-2)+16*(х-2)/(х+2)-3*(х-2)(х+2)=0

(24х+48+16х-32-3х^2+12)/(х+2)(х-2)=0

(-3 x^{2} +40х+28)/(х+2)(х-2)=0

Теперь составим систему, где (х+2)(х-2)≠0 и (-3 x^{2} +40х+28)=0

Получим, что х≠±2 и решим квадратное уравнение.

D=b^2-4ac=40²-4*(-3)*28=1936

√D=± 44

x=(-b±√D)/2a

x=(-40±44)/(-6)

x=14 или x=4/(-6) - что не удовлетворяет условию, т. к. скорость не может быть отрицательной.

Значит ответ 14 км/ч

Похожие вопросы