Предмет: Геометрия,
автор: krsitsogsotspydotsya
Дакажите, что прямоугольник АВСD и параллелограмм ЕВСF изображённые на рис. 3.8, равновелики.
Приложения:
Ответы
Автор ответа:
16
Равновеликие фигуры — это такие фигуры, площади которых между собой равны.
- Докажем, что S(ABCD) = S(EBCF).
Доказательство :
Так как по условию ABCD — прямоугольник, то AB⊥ED.
Рассмотрим параллелограмм EBCF.
- Площадь параллелограмма равна произведению его стороны и высоты, опущенной на эту сторону.
Следовательно, S(EBCF) = АВ×EF.
EF = BC (по свойству параллелограмма).
Тогда также верно равенство S(EBCF) = АВ×ВС.
Рассмотрим прямоугольник ABCD.
- Площадь прямоугольника равна произведению его смежных сторон.
Следовательно, S(ABCD) = AB×BC.
Итак, так как правые части выражений равны, то мы можем приравнять из левые части. То есть мы получаем, что S(ABCD) = S(EBCF).
Ответ :
Что требовалось доказать.
Похожие вопросы
Предмет: Литература,
автор: lubovkatarzhno
Предмет: Информатика,
автор: yaha1310
Предмет: Другие предметы,
автор: viskaproskuria
Предмет: Математика,
автор: strelkevich4156
Предмет: История,
автор: Kostenkovann3625