Предмет: Алгебра, автор: abdyldabekovaajzan

f(x)=x^3+√xНайти производную функции

Ответы

Автор ответа: tamik2007
1

Ответ:

f' (x) =

3 {x}^{2}  +  \frac{1}{2 \sqrt{x} }

Пошаговое объяснение:

1) Взять производную от обеих частей

f' (x) =

 \frac{d}{dx} ( {x}^{3}  +  \sqrt{x} )

2) Использовать правило дифференцирования

f' (x) =

 \frac{d}{dx} ( {x}^{3} ) +  \frac{d}{dx}( \sqrt{x} )

3) Найти производную

f' (x) =

3 {x}^{2}  +   \frac{1}{2 \sqrt{x} }

Автор ответа: table123
0

Ответ:

Объяснение:

f'(x)=3x^2 +1/ 2Vx    (V -корень)

Похожие вопросы