Предмет: Геометрия,
автор: aitynykds
сумма длин катетов прямоугольного треугольника равна 20 см Какой длины должны быть катеты чтобы площадь треугольника была наибольшей
Ответы
Автор ответа:
3
Ответ:
Оба катета по 10 см.
Объяснение:
Площадь S = a*b/2 (a, b - длины катетов)
a+b = 20
a = b - 20
Тогда
S = a*b/2 = (b - 20)*b/2
Возьмём производную от функции f(b) = (b - 20)*b/2.
f''(b) = ((b - 20)*b)'/2 = (b^2 - 20b)'/2 = (2b - 20)/2
Максимум функции f достигается тогда, когда f'(b) = 0
(2b-20)*b/2 = 0
(2b - 20)b = 0
b = 0 или 2b - 20 = 0, то есть b = 10.
Первый ответ не имеет смысла, получаем
b = 10
a = 20-b = 20-10 = 10
Похожие вопросы
Предмет: Другие предметы,
автор: nikitosik64321
Предмет: Математика,
автор: aleksendra
Предмет: Математика,
автор: HollyMh777
Предмет: Математика,
автор: терменатор2281