Предмет: Математика, автор: arturbukarev3

Вычислите частные производные первого и второго порядков:

для функции

z=e^xy(x^2+y^2)

найти dz/dx; dz/dy

Ответы

Автор ответа: Miroslava227
0

Ответ:

z =   {e}^{xy} ( {x}^{2}  +  {y}^{2} )

 \frac{dz}{dx}  =  {e}^{xy}  \times y( {x}^{2}  +  {y}^{2} ) + 2x {e}^{xy} =  \\  =  {e}^{xy}  ( {x}^{2} y +  {y}^{3}  + 2x)

 \frac{dz}{dy}  =  {e}^{xy}  \times x( {x}^{2}  +  {y}^{2} ) + 2y {e}^{xy}  =  \\  =  {e}^{xy} ( {x}^{3}  + x {y}^{2}  + 2y)

 \frac{ {d}^{2} z}{ {dx}^{2} }  =  {e}^{xy}  \times y( {x}^{2} y +  {y}^{3} + 2x) + (2xy + 2) {e}^{xy}   =  \\  =  {e}^{xy}  ( {x}^{2}  {y}^{2}  +  {y}^{4}  + 2xy + 2xy + 2) =  \\  =  {e}^{xy} ( {y}^{x}  +  {x}^{2}  {y}^{2}  + 4 xy + 2)

 \frac{ {d}^{2} z}{ {dy}^{2} }  =  {e}^{xy}  \times x( {x}^{3}  + x {y}^{2}  + 2y) +  {e}^{xy} (2xy + 2) =  \\  =  {e}^{xy} ( {x}^{4}  +  {x}^{2}  {y}^{2}  + 2xy + 2xy + 2) =  \\  =  {e}^{xy} ( {x}^{4}  +  {x}^{2}  {y}^{2}  + 4xy + 2)

 \frac{ {d}^{2} z}{dxdy}  =  \frac{ {d}^{2}z }{dydx}  =  {e}^{xy}  \times x( {x}^{2} y +  {y}^{3}  + 2x) +  {e}^{xy} ( {x}^{2}  + 3 {y}^{2} ) =  \\  =  {e}^{xy} ( {x}^{3} y +  {y}^{3} x + 2 {x}^{2}  +  {x}^{2}  + 3 {y}^{2} ) =  \\  =   {e}^{xy} ( {y}^{3} x +  {x}^{3} y + 3 {x}^{2}  + 3 {y}^{2} )

Похожие вопросы