Предмет: Геометрия, автор: kinderal

ABC-рівнобедрений трикутник з основою AC. Через довільну точку М його бісектриси BD проведено прямі, які паралельні його сторонам AB і BC та перетинають відрізок AC у точках E і F відповідно. Доведіть, що DE=DF.
В які послідовності використовуються теореми в переліку (А-Д) необхідні при розв'язанні задачі?

< - кут

А) ознака рівнобедреного трикутника: оскільки <А=<С то АВС рівнобедрений;

Б) властивість кутів рівнобедреного трикутника: оскільки трикутник... рівнобедрений, то <...=<...;

В) властивість висоти рівнобедреного трикутника: оскільки трикутник ...- рівнобедрений, а...-його висота, проведена до основи, то......=.........;

Г) властивість бісектриси кута при вершині рівнобедреного трикутника: оскільки трикутник.....-рівнобедрений, а ......-його бісектриса, отже і...................;

Д) властивість відповідних кутів, утворених при перетині паралельних прямих; ......||...... і січний......, отже <.....=<.....; .......||....... і січній......., отже <...=<.......​

Ответы

Автор ответа: happyksenia27
0

Ответ:

Однозначно абгвд

Бисектриса будет медианой, то есть равное расстояния так как равные углы при основе

Похожие вопросы