Предмет: Геометрия,
автор: kinderal
ABC-рівнобедрений трикутник з основою AC. Через довільну точку М його бісектриси BD проведено прямі, які паралельні його сторонам AB і BC та перетинають відрізок AC у точках E і F відповідно. Доведіть, що DE=DF.
В які послідовності використовуються теореми в переліку (А-Д) необхідні при розв'язанні задачі?
< - кут
А) ознака рівнобедреного трикутника: оскільки <А=<С то АВС рівнобедрений;
Б) властивість кутів рівнобедреного трикутника: оскільки трикутник... рівнобедрений, то <...=<...;
В) властивість висоти рівнобедреного трикутника: оскільки трикутник ...- рівнобедрений, а...-його висота, проведена до основи, то......=.........;
Г) властивість бісектриси кута при вершині рівнобедреного трикутника: оскільки трикутник.....-рівнобедрений, а ......-його бісектриса, отже і...................;
Д) властивість відповідних кутів, утворених при перетині паралельних прямих; ......||...... і січний......, отже <.....=<.....; .......||....... і січній......., отже <...=<.......
Ответы
Автор ответа:
0
Ответ:
Однозначно абгвд
Бисектриса будет медианой, то есть равное расстояния так как равные углы при основе
Похожие вопросы
Предмет: Алгебра,
автор: kdickareva
Предмет: Русский язык,
автор: Апельсинка127
Предмет: Русский язык,
автор: ЮнирАмур
Предмет: Физика,
автор: sokolin2
Предмет: История,
автор: Илья11345