Предмет: Геометрия,
автор: KiraDidkovska9
Дан квадрат со стороной 2 см. Точка S удалена от каждой из вершин квадрата на 2 см. Найдите расстояние от середины отрезка SC до середины стороны AB квадрата.
Ответы
Автор ответа:
0
Так как точка S равноудалена от сторон квадрата, то вместе с ним она образует правильную четырёхугольную пирамиду SABCD.
Найдём высоту правильной четырёхугольной пирамиды SABCD:
Диагональ квадрата основания пирамиды: d=AB=CD=2√2 см
Половина диагонали квадрата основания пирамиды: d/2=AO=BO=√2 см
Согласно с теоремой Пифагора, высота:
см.
Найдём положения точек через координатное пространство, приняв точку O за точку отсчёта. Тогда:
A(-3;3;0),B(-3;-3;0),C(3;-3;0),D(3;3;0),S(0;0;√3).
Середина SC: L(1,5;-1,5;√3/2)
Середина AB: M(-3;0;0)
Найдём расстояние от середины SC до середины AB:
Найдём высоту правильной четырёхугольной пирамиды SABCD:
Диагональ квадрата основания пирамиды: d=AB=CD=2√2 см
Половина диагонали квадрата основания пирамиды: d/2=AO=BO=√2 см
Согласно с теоремой Пифагора, высота:
см.
Найдём положения точек через координатное пространство, приняв точку O за точку отсчёта. Тогда:
A(-3;3;0),B(-3;-3;0),C(3;-3;0),D(3;3;0),S(0;0;√3).
Середина SC: L(1,5;-1,5;√3/2)
Середина AB: M(-3;0;0)
Найдём расстояние от середины SC до середины AB:
Приложения:
Похожие вопросы
Предмет: История,
автор: pavelgg0
Предмет: Математика,
автор: radaisaeva
Предмет: Математика,
автор: sanakoevvladislav15
Предмет: Химия,
автор: Erick14