Найдите область определения функции f(x)= x-5/x^2+x-6
Ответы
Ответ:
x∈ (-∞; -3) ∪ (-3;2) ∪ (2; +∞)
Объяснение:
x²+x-6 ≠0
найдем x²+x-6 =0
D = 25
x₁ = 2
x₂ = (-1-5)/2 = -3
x∈ (-∞; -3) ∪ (-3;2) ∪ (2; +∞)
_______₀_______₀_______
-3 2
f(x) = ( x - 5 ) / ( x² + x - 6 )
Знаменатель дроби не может равняться нулю, значит для любого числа из области определения данной функции должно выполняться условие:
x² + x - 6 ≠ 0
Решим соответствующее квадратное уравнение и узнаем, при каких значениях x, знаменатель дроби равен нулю:
x² + x - 6 = 0
D = 1 + 24 = 25
x₁ = ( - 1 - 5 ) / 2 = - 6 / 2 = - 3
x₂ = (- 1 + 5) / 2 = 4 / 2 = 2
Корни этого уравнения нам говорят о том, что эти числа не подходят к условие, так как при таких значениях x знаменатель принимает значение 0, а значит они не входят в область определения функции.
==================================
Область определения функции - все числа кроме - 3 и 2.
Математически это записывается так:
x ∈ ( - ∞ ; - 3 ) ∪ ( - 3 ; 2 ) ∪ ( 2 ; + ∞ ).
================================