Предмет: Геометрия, автор: itsmikhailchudinov17

Прямая, параллельная стороне AC треугольника ABC пересекает стороны AB и BC в точках M и N соответственно. Найти NC, если AC=69, MN=23, BN=60.

Ответы

Автор ответа: KuOV
22

Ответ:

NC = 120

Объяснение:

MN║AC,

AC = 69,  MN = 23,  BN = 60.

ΔABC ~ ΔMBN по двум углам, так как у них ∠В общий, а ∠ВАС = ∠BMN как соответственные при пересечении АС║MN секущей АВ.

\dfrac{BN}{BC}=\dfrac{MN}{AC}

Пусть NC = x, тогда ВС = BN + NC = 60 + x.

\dfrac{60}{60 + x}=\dfrac{23}{69}

23\cdot (60+x)=60\cdot 69

1380+23x=4140

23x=2760

x=120

NC = 120

Приложения:
Похожие вопросы
Предмет: Биология, автор: wika201387
Предмет: Математика, автор: rutube