Известно, что произведение двух натуральных чисел на 15 больше их наибольшего общего делителя. Чему может быть равно большее из чисел?
Ответы
Ответ:
Объяснение:
Обозначим эти числа а и b. НОД(a,b) обозначим n.
Тогда можно написать:
a = n*m; b = n*k.
Произведение чисел на 15 больше n.
ab = n + 15
n*m*n*k = n + 15
(mk)*n^2 - n - 15 = 0
Попробуем решить это, как квадратное уравнение.
D = (-1)^2 - 4*(-15)*mk = 60mk + 1
Чтобы n было натуральным числом, D должно быть точным квадратом.
D = 60mk + 1 = p^2 > 1; p > 1
n1 = (1 - p)/(2mk) < 0, так как m>0, k>0, p>1 - не подходит
n2 = (1+p)/(2mk) > 0 - подходит.
Теперь найдем максимум этой функции относительно mk, учитывая, что p = √(60mk+1)
n = (1 + √(60mk+1)) / (2mk)
Например, при mk = 2 получаем:
D = 60*2 + 1 = 121 = 11^2
n = (1 + √121)/(2*2) = (1+11)/4 = 12/4 = 3
При mk = 6 получаем:
D = 60*6 + 1 = 361 = 19^2
n = (1 + 19) / (2*6) = 20/6 - нецелое
Итак, мы получили: mk = 2, m = 2, k = 1, n = 3
a = n*m = 3*2 = 6; b = n*k = 3*1 = 3.
НОД(a, b) = 3
ab = 6*3 = 18 = 3 + 15.
Наибольшее из чисел: 6.