Предмет: Алгебра, автор: skatkova1207

Сидящий на трибуне бегового стадиона математик Петя заметил, как в какой-то момент времени встретились трое бегунов: двое из них бежали против часовой стрелки, а другой бежал по часовой. К этому времени Петя заметил, что первые два бегуна пробегали полный круг за 7 и 3 мин, а другой при этом пробегал полный круг за 4 мин. Помоги Пете рассчитать следующее время встречи бегунов.

Ответы

Автор ответа: artemiykatkov
2

Ответ: 84 мин.

Объяснение:

Обозначим длину стадиона символом S. По условию задачи можно считать, что изначально трое бегунов стартовали из одной точки.

2. Заметим, что бегуны, двигающиеся в противоположных направлениях, встречаются в определённый момент времени тогда и только тогда, когда к этому времени они суммарно пробежали расстояние, кратное S.

Действительно, в первый момент встречи после старта бегуны суммарно пробегут два отрезка пути, сумма длин которых составит длину стадиона S. После этого до второй встречи эти два бегуна пробегут ещё два отрезка пути, сумма длин которых составит S, а значит, от момента старта до момента второй встречи они пробегут суммарно 2S. И так далее, на n-ый момент встречи они суммарно пробегут расстояние, равное nS.

3. Условимся называть бегуна, пробегающего полный круг стадиона за время 7 мин первым, пробегающего полный круг стадиона за время 3 мин вторым, и, наконец, пробегающего полный круг за 4 мин третьим. Заметим, что три бегуна встретятся в один и тот же момент тогда и только тогда, когда к этому моменту времени встретились первый и третий бегуны и второй и третий бегуны.

4. Пусть время t — искомое время встречи. Тогда, так как первый и третий бегуны встретились через время t, получаем:

S7⋅t+S4⋅t=nS, где n — натуральное.

Аналогично, так как через время t встретились второй и третий бегуны, получаем:

S3⋅t+S4⋅t=mS, где m — натуральное.

5. Из полученных уравнений находим:

⎧⎩⎨⎪⎪⎪⎪t=n17+14,t=m13+14.

Исключая переменную t, получим:

nm=17+1413+14=(7+4)⋅3(3+4)⋅7=3349.

Так как числа 33 и 49 взаимно просты, получаем, что n и m имеют вид:

n=33⋅k,

m=49⋅k,

где k — произвольное натуральное число.

6. Таким образом, для момента встречи t мы получаем следующую формулу:

t=n17+14=(7+4)⋅3⋅k17+14=7⋅3⋅4⋅k,

где параметр k соответствует номеру встречи.

7. Выбирая k=1, получаем, что ближайшая встреча произойдёт через t=84 мин.

Похожие вопросы
Предмет: Математика, автор: Karina12S