Предмет: Математика, автор: den0101200026

ПОМОГИТЕ РЕШИТЬ СРОЧНО!!! ДАЮ 35 БАЛЛОВ!!!!


Даны координаты вершин пирамиды А1 А2 А3 А4 . Найти:

1. длину ребра А1А2 ;

2. угол между ребрами А1А2 и А1А4;

3. площадь грани А1А2А3 и объем пирамиды;

4. длину высоты, опущенной из вершины А4 на грань А1А2А3;

5. уравнение ребра А1А4, уравнение плоскости А1А2А3 и угол между ребром А1А4 и плоскостью А1А2А3;

Сделать чертеж.


Дано:

A1(4,7,8)

A2(-1,3,0)

A3(2,4,9)

A4(1,8,9)

Ответы

Автор ответа: dnepr1
4

Даны координаты вершин пирамиды:

A1(4; 7; 8), A2(-1; 3; 0) , A3(2; 4; 9) , A4(1; 8; 9).

Находим:

1. Длину ребра А1А2.

Вектор А1А2 = (-1-4; 3-7; 0-8) = (-5; -4; -8).

|A1A2| = √((-5²) + (-4)² + (-8)²) =   √(25 + 16 + 64) = √ 105.

2. Угол между ребрами А1А2 и А1А4.

Вектор А1А2 = (-5; -4; -8), |A1A2| = √ 105 (см.п.1).

Находим вектор А1А4 = (1-4; 8-7; 9-8) = (-3; 1; 1) и его модуль:

|A1A4| =  √(9 + 1 + 1) = √ 11.

cos (A1A2_A1A4) = (-5)*(-3)+(-4)*1+(-8)*1)/(√ 105*√ 11) = 3/√ 1155 ≈ 3/33,98529.

Угол равен 0,088273 радиан или  1,4824078 градуса.

3. Площадь грани А1А2А3.

Вектор А1А2 = (-5; -4; -8) (см.п.1).

Находим вектор А1А3 =  A3(2,4,9) - A1(4,7,8) = (-2; -3; 1).

Площадь равна половине модуля векторного произведения А1А2 на А1А3.

 i         j        k|        i          j

-5       -4      -8|      -5       -4

-2      -3         1|       -2      -3  = -4i + 16j + 15k + 5j - 24i - 8k =

                                            = -28i + 21j + 7k = (-28; 21; 7).  

S = (1/2)√((-28)² + 21² + 7²) =  (1/2)√(784 + 441 + 49) = (1/2)√1274 =

= (1/2)*7√26 = (7/2)√26 ≈ 17,846568 кв.ед.

4. Объем пирамиды V = (1/6)*[A1A2xA1A3]*A1A4 =

= (1/6)* (-28; 21; 7)*(-3; 1; 1) = (1/6)*(84 +21 + 7) = 112/6 = 56/3 ≈ 18,6667  куб.ед.

 5. Длину высоты, опущенной из вершины А4 на грань А1А2А3;

H = 3V/S(A1A2A3) = 3*(56/3)/((7/2)√26) = 56√26/91 ≈ 3,137858.

6. Уравнение ребра А1А4.

Точка A1(4; 7; 8), вектор А1А4 = (-3; 1; 1), его модуль √(9+1+1) =√11.

Уравнение А1А4: (x - 4)/(-3) = (y - 7)/1 = (z - 8)/1.

7. Уравнение плоскости А1А2А3.

Используя найденное векторное произведение А1А2 на А1А3:

-28x + 21y + 7z - 91 = 0   или, сократив на (-7):

4x - 3y - z + 13 = 0.

8. Угол между ребром А1А4 и плоскостью А1А2А3;

Вектор А1А4 = (-3; 1; 1), модуль √11.

Вектор плоскости (-28;21; 7), модуль √1274.

sin a = |-3*-28+1*21+1*7)/(√11*√1274) = 0,9460998.

Угол равен 1,240974 радиан или 71,10256 градуса.  


lerakovalenko2020: откуда взялось *7√26
dnepr1: √1274 = 7√26.
Похожие вопросы
Предмет: Алгебра, автор: 12катюха
Предмет: Математика, автор: shirina8