Предмет: Математика, автор: n28m20061

При каком значении параметра a прямая y=ax+1 является касательной к графику функции y=2-lnx

Ответы

Автор ответа: dnepr1
1

Угловой коэффициент касательной к графику функции равен производной функции в точке касания.

Производная функции y=2-lnx  равна -1/x.

Значит, уравнение касательной имеет вид y = (-1/x)*x+ 1 или y = 0.

В точке касания координаты кривой и прямой равны.

Приравняем: 2 - lnx  = 0, отсюда x = e².

Точка касания  В = (e²; 0).

Известна точка прямой на оси Оу - это свободный член уравнения прямой, то есть у = 1 при х = 0.

По двум точкам находим угловой коэффициент касательной.

k = Δy/Δx  = (0 - 1)/(e² - 0) = -1/e².

Ответ: а = -1/e².

Приложения:
Похожие вопросы
Предмет: Математика, автор: Salkynbaeva