Предмет: Геометрия,
автор: gizzicat
Треугольник АВС задан координатами своих вершин: А(0;3), В(1; -4),
С(5;2)
а) Напишите уравнение прямой АВ,
б) Напишите уравнение медианы АМ,
в) Найдите длину медианы АМ.
Ответы
Автор ответа:
66
Даны вершины треугольника АВС: А(0;3), В(1; -4), С(5;2).
а) уравнение стороны АВ. Вектор АВ = (1-0; -4-3) = (1; -7).
Уравнение: x/1 = (y - 3)/(-7) или 7x + y - 3 = 0 в общем виде.
б) уравнение медианы АМ.
Находим координаты точки М как середины стороны ВС.
В(1; -4), С(5;2)
М = (В (1;-4) + С (5;2))/2 = (3; -1). Точка А ( 0; 3).
Вектор АМ = (3-0; -1-3) = (3; -4).
Уравнение АМ: x/3 = (y - 3)/(-4).
Или в общем виде 4x + 3y - 9 = 0.
в) длина медианы АМ.
Вектор АМ = (3-0; -1-3) = (3; -4).
Длина (модуль) |AB| = √(3² + (-4)²) = √(9 + 16) = √25 = 5.
Похожие вопросы
Предмет: Физика,
автор: arfvghj
Предмет: Українська мова,
автор: olko334
Предмет: Математика,
автор: ibrahim030322
Предмет: Математика,
автор: SonyaTheFox
Предмет: Математика,
автор: Лёликкролик35