Предмет: Математика, автор: kirill5ponomarenko

Помогите пожалуйста, весь 3 вариант

Приложения:

Ответы

Автор ответа: Miroslava227
2

Ответ:

1)8 \times  {8}^{ log_{8}(6) }  = 8 \times 6 = 48

2) {9}^{ log_{3}(2) }  =  {3}^{2 log_{3}(2) }  =  {3}^{ log_{3}(4) }  = 4

3) log_{ \frac{1}{5} }( {5}^{3}  ) =  log_{  {5}^{ - 1}  }( {5}^{3} )  =  - 1 \times 3 \times  log_{5}(5)  =  - 3

4)1

5) log_{6}( {6}^{3} )  \times  log_{9}( {9}^{4} )  = 3 \times 4 \times  log_{6}(6)  \times  log_{9}(9)  = 12

6) log_{6}( \frac{54}{1.5} )  =  log_{6}(36)  = 2

7)  log_{8}( \frac{80}{1.25} )  =  log_{8}(64)  = 2

8)1 +  log_{ {5}^{ - 1} }( {5}^{4} )  = 1 - 1 \times 4 \times  log_{5}(5)  = 1 - 4 =  - 3

9) log_{0.55}( \frac{20}{11} )  =  log_{ \frac{55}{100} }( \frac{20}{11} )  =  log_{ \frac{11}{20} }(( { \frac{11}{20} )}^{ - 1} )  =  - 1

10) log_{5}(20)  +  log_{5}(0.05)  =  log_{5}(20 \times 0.05)  =  log_{5}(1)  = 0

11) log_{ \frac{2}{5} }(9)  \times  log_{9}( \frac{5}{2} )  =  log_{ \frac{2}{5} }(9)   \times  log_{9}( ({ \frac{2}{5}) }^{ - 1} )  =  - 1

12) log_{3}(13)  \times  log_{13}( {3}^{2} )  = 2

13)(1 -  log_{ {2}^{2} }( {2}^{5} ) )(1 -  log_{2}( {2}^{5} ) ) = (1 -  \frac{1}{2}  \times 5)(1 - 5) =  -  \frac{3}{2} \times ( - 4) = 6

17) \frac{ log_{4}(80) }{ log_{4}(16) +  log_{4}(5) }  =  \frac{ log_{4}(80) }{ log_{4}(16 \times 5) }  =  \frac{ log_{4}(80) }{ log_{4}(80) }  = 1

18) \frac{ log_{6}( {2}^{2} ) }{ log_{6}(2) }  =  \frac{2 log_{6}(2) }{ log_{6}(2) }  = 2

19)  \frac{ log_{7}(2) }{ log_{ {7}^{ \frac{1}{2} } }(2) }  =  \frac{ log_{7}(2) }{2 log_{7}(2) }  =  \frac{1}{2}  = 0.5

20) {2}^{ log_{ {2}^{2} }(16) }  =  {2}^{ \frac{1}{2}  log_{2}(16) }  =  {2}^{ log_{2}(4) }  = 4

21)  { log_{ {15}^{ \frac{1}{2} } }(3375) }^{2}  =  { \frac{1}{2} }^{2}  \times  log_{15}(3375)  =  \frac{1}{4}   \times 3 = 0.75

22) {9}^{ log_{9}( {8}^{2} ) }  = 64

23) {5}^{2 log_{5}( \sqrt{8} ) }  =  {5}^{ log_{5}( { \sqrt{8} }^{2} ) }  = 8

24) log_{16}(4)  =  \frac{1}{2}  = 0.5

25) \frac{30}{ {3}^{ log_{3}(2) } }  =  \frac{30}{2}  = 15

26) log_{ \frac{2}{5} }( \sqrt{ \frac{5}{2} } )  =  log_{ \frac{2}{5} }( { \frac{2}{5} }^{ -  \frac{1}{2} } )  =  -  \frac{1}{2}  =  - 0.5

Похожие вопросы
Предмет: Английский язык, автор: devi321
Предмет: Математика, автор: Аля11111113333984