Предмет: География, автор: Аноним

Знайти скалярний добуток векторів a i b, якщо:
a = 3; b = 2; (a,b) = 30°. ​

Ответы

Автор ответа: sergeyfil2008
0

Ответ:

Объяснени1) Итак, скалярное произведение векторов а (ах, ay, az) и b(bx, by, bz) это число и оно вычисляется по формуле:

(a,b) = ax*bx + ay*by + az*bz

Это, кстати, еще в школе изучают, классе этак в 10, а то и раньше.

В Вашем случае перемножаются вектора (2а+b) и (3а-2b). Координаты векторов а и b Вы знаете. Чтобы найти координаты векторов (2а+b) и (3а-2b) надо в 1 случае умножить вектор а на 2 и сложить его с вектором b, а во втором случае умножить вектор а на 3 и вычесть из него умноженный на 2 вектором b.

Запишем еще два правила:

2) При умножении вектора на число, каждая координата вектора умножается на это число. Пусть есть вектор а (ах, ay, az). Тогда вектор а*m (где m - любое число) будет иметь следующие координаты: а*m (ах*m, ay*m, az*m)

3) При сложении двух векторов складываются их соответствующие координаты. Пусть имеются два вектора а (ах, ay, az) и b(bx, by, bz). Суммой этих векторов будет вектор c ((ax+bx), (ay+by), (az+bz))

Используя эти три правила найдете координаты векторов (2а+b) и (3а-2b), а затем и их скалярное произведение.е:

Похожие вопросы
Предмет: Алгебра, автор: dumina2001
Предмет: Математика, автор: наташа19901