Предмет: Математика, автор: Аноним

СРОЧНО!!! Расположите числа, начиная с правого неизвестного по часовой стрелке.
2,17/27,10/9,1/6, 1 1/2,2 4/7.

Приложения:

windowsgabarit: Ответ: 2 4/7, 2, 1 1/2, 17/27, 1/6 , 10/9

Ответы

Автор ответа: IZUBR
2

Ответ:

2\frac{4}{7}; 2; 1\frac{1}{2};\frac{17}{27}; \frac{1}{6}; \frac{10}{9}.

Пошаговое объяснение:

У нас известна "точка отправления" в этой цепочке, это число 5.

Далее, согласно стрелочке, идущей вправо, из числа 5 вычитается дробь 2\frac{3}{7}. Для этого представим данную дробь в виде неправильной, для этого в числителе основание знаменателя умножаем на целую часть дроби, и прибавляем "остаток" из числителя, оставляя нетронутым сам знаменатель: 2\frac{3}{7}=\frac{7*2+3}{7}=\frac{17}{7}.

Число 5 также для удобства необходимо представить в виде дроби со знаменателем 7: \frac{35}{7}.

Теперь мы имеем право без проблем вычесть одну дробь из другой:

\frac{35}{7}-\frac{17}{7}=\frac{18}{7}=2\frac{4}{7}.

Далее, согласно стрелочке у нас идет деление полученной дроби на дробь 1\frac{2}{7}, которую мы тоже переводим в неправильную и получаем: 1\frac{2}{7}=\frac{7*1+2}{7}=\frac{9}{7}.

Теперь чтобы поделить одну дробь на другую, необходимо вторую дробь перевернуть наверх знаменателем и произвести умножение этих дробей: \frac{18}{7}:\frac{9}{7}=\frac{18}{7}*\frac{7}{9}=\frac{2*1}{1*1}=2.

Далее идет еще одно деление на дробь 1\frac{1}{3}. Переводим дробь в неправильную: 1\frac{1}{3}=\frac{1*3+1}{3}=\frac{4}{3}.

Теперь число переводим в дробь со знаменателем 3:

2=\frac{6}{3}

А сейчас поделим \frac{6}{3} на \frac{4}{3}:

\frac{6}{3}:\frac{4}{3}=\frac{6}{3}*\frac{3}{4}=\frac{3*1}{1*2}=\frac{3}{2}=1\frac{1}{2}.

Теперь нам необходимо найти число, на которое необходимо умножить полученную дробь, чтобы получить \frac{17}{18}.

Можем составить уравнение:

\frac{3}{2}*x=\frac{17}{18}

Отсюда неизвестное число в левом нижнем прямоугольнике будет равно:

x=\frac{17}{18}:\frac{3}{2}\\\\x=\frac{17}{18}*\frac{2}{3}\\\\x=\frac{17*2}{18*3}=\frac{17*1}{9*3}=\frac{17}{27}.

Нам осталось найти два числа в этой цепочке. Пойдем от обратного, из числа 5 направо.

Неизвестное число делится на дробь \frac{2}{9} и получается число 5. Поэтому прибегнем к составлению уравнения:

x:\frac{2}{9}=5\\\\\frac{x}{1}*\frac{9}{2}=5\\\\\frac{9*x}{2}=5\\\\9*x=5*2\\\\9*x=10\\\\x=\frac{10}{9}

Теперь нам необходимо найти оставшееся последнее число в левом верхнем прямоугольнике. Нам известно итоговое число и исходное, поэтому чтобы найти промежуточное число, необходимо из итогового вычесть начальное:

\frac{10}{9}-\frac{17}{18}

Нужно привести дроби к общему знаменателю, для этого первую дробь домножим на 2:

\frac{10}{9}-\frac{17}{18}=\frac{10*2}{9*2}-\frac{17}{18}=\frac{20}{18}-\frac{17}{18}=\frac{3}{18}=\frac{1}{6}.

Итого, слева направо по часовой стрелке, начиная с числа 5, получим цепочку чисел вместо пропусков:

2\frac{4}{7}; 2; 1\frac{1}{2};\frac{17}{27}; \frac{1}{6}; \frac{10}{9}.

Похожие вопросы
Предмет: Математика, автор: Viktoria555555558