Докажите, что для любого треугольника проекция
диаметра описанной окружности, перпендикулярного
одной стороне треугольника, на прямую, содержащую
вторую сторону, равна его третьей стороне.
Ответы
Решение : ///////////////////////////////////////////////////
Докажите, что для любого треугольника проекция диаметра описанной окружности, перпендикулярного одной стороне треугольника, на прямую, содержащую вторую сторону, равна его третьей стороне.
Объяснение:
Пуcть из концов диаметра опущены перпендикуляры NP и MH на сторону ВС .Пусть МН пересекает окружность в т К.
Четырехугольник РNKH - прямоугольник : ∠Р=∠Н=90° и ∠К=90° , тк. опирается на диаметр MN , значит ∠N=90°⇒ противоположные стороны равны , т.е. проекция РН=NK.
По т. об углах с соответственно перпендикулярными сторонами ∠АВС=∠NMK ⇒ хорды АС=NK. Значит РН=АС
================================
Теорема об углах с соответственно перпендикулярными сторонами "Если стороны одного угла соответственно перпендикулярны сторонам другого угла, то такие углы или равны, или в сумме составляют 180."