Предмет: Математика, автор: vgorskova040

Помогите, желательно с объяснением) даю 50 баллов. Нужно решить и найти область определения​

Приложения:

vgorskova040: первый
vgorskova040: ну значит 3
vgorskova040: 2,3,4

Ответы

Автор ответа: DaLaRt
1

Ответ:

Пошаговое объяснение:

1)y=-8 x∈R

2)x∈R/(12)

3)нет пересечений с осью y x∈|12;+∞)

4)y=√30/5  x∈(-∞;1)∪|3;5)

5) нет пересечений с осью y x∈(-∞;-5)∪(5;+∞)

Автор ответа: xacku2020
1

Ответ:

↓↓↓↓

Пошаговое объяснение:

2.у=\frac{-8x}{-x+12}  здесь знаменатель не должен равнятся 0ю

-х+12≠0 ⇒х≠12. Область определения х любое кроме 0

3.у=\frac{\sqrt{x-12} }{4} в знаменателе конкретное число без х. значит это не опасно. Но есть корень и тогда х-12≥0 ,х≥12 .Область определения х≥12.

4.у=\sqrt{\frac{2x-6}{-x^{2} +6x-5} }  ну здесь сплошные заморочки и корень и дробь!

\frac{2x-6}{-x^{2} +6x-5} }\geq 0

-х²+6х-5=0 ,  Д=36-20=16 ,   х1=1,  х2=-10.

\frac{2x-6}{-1*(x-1)(x+10)} \geq 0  по м. интервалов. не завыть кружочки знаменателя пустые!!!

  +                   -          +             -

______(-10)____(1)_____[3]_______

Область определения     х<-10, 1<x≤3.

Похожие вопросы