Каждую грань правильной пирамиды SA1A2...A6 с основанием A1A2...A6 разрешается раскрасить в один из 11 цветов. Сколькими способами можно раскрасить пирамиду при условии, что все грани будут разного цвета? Раскраски считаются различными, если не получаются друг из друга вращением пирамиды.
Ответы
Ответ:13860
Пошаговое объяснение:1. Раскрасим основание A1A2...A4 в один из 11 цветов. Такую раскраску можно осуществить 11 способами.
2. Раскрасим теперь по очереди боковые грани пирамиды. Для первой грани SA1A2 имеется 11−1=10 вариантов раскраски, для второй грани SA2A3 имеется 11−2=9 вариантов раскраски, и так далее, для 4-й по порядку грани имеется 11−4=7 вариант(-ов, -a) раскраски. Таким образом, всего получаем
M=11(11−1)(11−2)...(11−4)
вариантов раскраски пирамиды.
3. По условию задачи две раскраски считаются одинаковыми, если получаются друг из друга движением. В нашем случае, у пирамиды существует ровно 4 движений (4 поворотов). Потому искомое число раскрасок будет в 4 раз меньше величины M.
Получаем ответ:
11(11−1)(11−2)...(11−4)4=13860.